5% early application discount

Apply by 28 March 2024 and you could be eligible for a 5% discount on your tuition fees.

Find out more



Accelerate your career in engineering with a Master's that will prepare you to take on management positions across a range of manufacturing and service industries. Make an impact by optimising supply chains, enhancing manufacturing performance, streamlining process flows and applying a well-rounded combination of industrial engineering and management skills.

The MSc in Engineering and Management of Manufacturing Systems is an established course that develops professionals with a thorough understanding of the knowledge, skills and behaviours needed to design and manage competitive manufacturing and service operations. It majors on industrially relevant projects, team working, and transferable skills that will enhance your career performance whether you choose to go into manufacturing, service or consultancy sectors. Our graduates enjoy careers soon after completing the course and have typically gone on to work in a wide range of fields, from automotive to retail, and from financial services through to health care.

Overview

  • Start dateFull-time: March or October. Part-time: throughout the year
  • DurationOne year full-time, two-five years part-time
  • DeliveryTaught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%
  • QualificationMSc, PgDip, PgCert
  • Study typeFull-time / Part-time
  • CampusCranfield campus

Who is it for?

This course is suitable for graduates with engineering, management, IT or related degrees keen to develop their careers in manufacturing or related industries, including academia. We also welcome graduates currently working in industry who are keen to extend their qualifications or pursue a career change, as well as individuals with other qualifications who possess considerable relevant experience.

I recommend Cranfield as the university of choice for students who wish to excel within manufacturing. The industry-informed taught modules have provided me a wide knowledge, and will guide my professional development in the longer term.

Boyang Song, PhD student

Why this course?

There are numerous benefits associated with undertaking the MSc in Engineering and Management of Manufacturing Systems at Cranfield University. These include:

  • Study in a postgraduate-only environment where Masters' graduates can secure positions in full-time employment in their chosen field, or undertake academic research.
  • Teaching by leading academics as well as industrial practitioners.
  • Work alongside a strong research team.
  • Dedicated support for off-campus learners including extensive information resources managed by the University's library.
  • Consultancy to companies supporting their employees on part-time programmes, in relation to individual projects.
  • Course design and delivery is informed by Industry.

The Master's degree is designed to meet the training needs of industry and we have a strong input from experts in the sector. As a course, it aims to develop well-rounded professionals, capable of addressing both engineering and management problems and finding innovative solutions that enable companies to improve their efficiencies and performance. As a student, you will gain the opportunity to work with best-in-class companies and apply your previously attained engineering knowledge with a competitive layer of management capabilities.

Informed by Industry

Our courses are designed to meet the training needs of industry and have a strong input from experts in their sector. Students who have excelled have their performances recognised through course awards. The awards are provided by high profile organisations and individuals, and are often sponsored by our industrial partners. Awards are presented on Graduation Day.

Companies that we typically work with, or have worked with in the past include:

  • Becton Dickinson (BD) Group
  • GKN Aerospace
  • BVI Medical
  • Syan Farms
  • Denso
  • Ideal Standard
  • DPD
  • Airbus
  • Siemens
  • The IET
  • Gambica

Course details

The course comprises eight assessed modules, a group project and an individual project. The modules include lectures and tutorials, and are assessed through practical work, written examinations, case studies, essays, presentations and tests. These provide the 'tools' required for the group and individual projects.

Course delivery

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%

Group project

The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.

Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems are concerned.

Individual project

A key element of the Master's programme is the project work undertaken. The individual research project is either industrially or Cranfield University driven. Students select the individual project in consultation with the Course Director. It provides students with the opportunity to demonstrate independent research ability, the ability to think and work in an original way, contribute to knowledge, and overcome genuine problems in manufacturing. The projects are sponsored by industrial organisations.

Please note part-time students instead carry out a dissertation with their employer.

Modules

Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.


Course modules

Compulsory modules
All the modules in the following list need to be taken as part of this course.

Induction

Module Leader
  • Professor Konstantinos Salonitis
Aim

    To introduce the programme and the courses and the facilities available at Cranfield.


Syllabus
    • Team working
    • Project Management
    • Various interpersonal skills: Report writing and Presentation skills
    • Various MS Office training packages
Intended learning outcomes On successful completion of this module a student should be able to:

1. Have an appreciation of the Manufacturing Masters programme and course philosophy, structure, content, teaching methods, staff and administration.
2. Be familiar with key facilities (internal and external to Cranfield) and resources such as the library, computer network and Careers Service.
3. Have essential, fundamental knowledge prior to the study including a range of computing-related skills.
4. Have experienced team building and other interpersonal skills including written and verbal communication skills.
5. Appreciate the importance of time/project management throughout the study.
6. Appreciate the importance of Health and Safety at workplace.

Operations Management

Aim

    To introduce you to core factors of managing operations.


Syllabus
    • An introduction to manufacturing and service activities.
    • Capacity, demand and load; identifying key capacity determinant; order-size mix problem; coping with changes in demand.
    • Standard times, and how to calculate them; process analysis and supporting tools; process simplification.
    • What quality is; standards and frameworks; quality tools; quality in the supply chain.
    • Scheduling rules; scheduling and nested set-ups.
    • Roles of inventory; dependent and independent demand; Economic Order Quantity; uncertain demand; inventory management systems and measures.
    • Information systems – at operational, managerial, and strategic levels; bills of material; MRP, MPRll and ERP systems.
    • Ohno’s 7 wastes; Just-in-Time systems (including the Toyota Production System, and Kanbans).
    • Class discussion of cases, exercises, and videos to support this syllabus.
Intended learning outcomes On successful completion of this module you will be able to:

1. Assess the key capacity determinant in an operation, and carry out an analysis to develop the most appropriate approach in response to changes in demand.
2. Select and apply appropriate approaches and tools to determine standards and improve processes.
3. Determine the information needed to support businesses, in particular manufacturing operations.
4. Assess and select appropriate Just-in-Time (JIT) tools to improve operations.
5. Develop appropriate quality systems for the whole of their supply chain – from supplier, through operations to customers – and ensure these systems are sustained and a culture of continuous improvement prevails.

Enterprise Systems

Aim

    The module aims to provide a systematic understanding and knowledge of the enterprise systems principles and how to use these systems to manage an enterprise. The course will also provide hands-on experience using SAP as a leading industry-standard software application.


Syllabus
    • Introduction to business functions, processes and data requirements within an enterprise.
    • Enterprise wide IT systems. Managing Enterprise through ERP.
    • Enterprise Resource Planning (ERP): concepts, techniques and tools.
    • ERP selection and implementation issues.
    • An Introduction to IoT and Cyber Security.
    • SAP based hands-on case studies.

Intended learning outcomes

On successful completion of this module you will be able to:

1. Describe the principles of business functions, processes and data infrastructure.

2. Explain the concepts, tools and techniques of Enterprise Resource Planning (ERP) and its related subjects such as IoT and Cyber Security.

3. Evaluate issues and challenges in ERP implementation and the importance of Enterprise-wide systems to business operations.

4. Identify the various criteria for ERP selection.

5. Demonstrate working/application knowledge on the use of SAP tool through hands-on case studies.

Operations Analysis

Aim

    To develop your skills to a rigorous and logical application of tools and techniques for the design and control operational systems.

Syllabus

    • Six Sigma, Process capability, common and special cause variability, control charts, acceptance sampling.

    • Lean Manufacturing elements such as Value Stream Mapping and Waste identification.

    • Analysis of systems to produce simple models. IDEF0 and IDEF3 and their application. Business process fundamentals and the process review. Improvement procedures, modelling methods and process models. Performance measurement. Responding to and improving reliability.

Intended learning outcomes On successful completion of this module you will be able to:

1) Combine tools for assessing, controlling and improving processes, and their strengths and limitations. 
2) Analyze the relationship between work-in-process, lead-time and output in a production system and the impact of variability. 
3) Decide the appropriate Six Sigma, Statistical Process Control tools and techniques and lean manufacturing approaches for different manufacturing cases. 
4) Develop a ‘systems view’ of manufacturing and servicing operations. 
5) Integrate unreliabilityin maintenance techniques can be deployed. 
6) Critically appraise appropriate performance measurement system deployment. 

Manufacturing Systems Engineering

Aim

    To develop your understanding of complex manufacturing systems engineering through the application of different modelling and simulation tools, techniques and methodologies with a view to analyse and (re)design manufacturing systems that maximise value to customers while minimising waste.

Syllabus
    • Introduction to modelling: taxonomy, overview of methods and techniques.
    • Design of manufacturing layouts.
    • Group Technology & Cellular manufacturing in the context of Human centred factory design.
    • Manufacturing Systems modelling using discrete-event simulation, Systems dynamics and Agent-based simulation techniques and methodologies.
    • Case study Analysis of manufacturing systems using simulation.
Intended learning outcomes On successful completion of this module you should be able to:

1. Differentiate the applicability of different layout types applicable in manufacturing businesses.
2. Assess how production layout and system design influences productivity and, in particular, appraise the effectiveness of cellular configurations.
3. Design a graphical simulation model using an industry leading discrete-event simulation tool.
5. Contrast discrete-event simulation to other modelling techniques especially in addressing emerging manufacturing paradigms.
6. Devise an experimental procedure and interpret the consequential results of the simulation model.

Internet of Things

Aim
    To provide introductory knowledge and coverage of IoT technologies and architectures and highlight their innovation potential, enabling you to develop a practical knowledge of IoT solutions development process for product and service innovation.
Syllabus
    • IoT Concepts & Introduction to IoT
    • IoT-enabled innovation in products and services
    • Introduction to IoT project activity
    • Industry 4.0 technologies and Industrial Internet of things (IIoT)
    • IoT sensing - Introduction to IoT architectures and platforms
    • Creating and working with IoT data flows
    • IoT-enabled data value chains
    • IoT-driven data analytics (edge and cloud analytics)
    • From data to IoT-enabled products, applications and services
    • Cloud services, interfaces, dashboards
    • Overview of IoT standards
    • IoT Challenges (scalability, interoperability, security, privacy)
    • IoT-enabled business ecosystems and business models
Intended learning outcomes

On successful completion of this module you will be able to:

1. Appraise the key concepts of Internet of Things, and inspect enabling Industry 4.0 technologies.

2. Evaluate use cases of theoretical concepts.

3. Assess recent and evolving developments, protocols and technologies for IoT enabled systems and Industrial Internet of things (IIoT).

4. Outline IoT-enabled innovation opportunities and apply the cognitive, practical and key transferable skills necessary for IoT enabled applications and services by proposing your own IoT enabled solution

5. Identify key challenges in the delivery and take-up of IoT-enabled solutions, highlighting the importance of security, privacy and ethics

Supply Chain Management

Aim

    To introduce you to the wider issues surrounding the management and optimisation of supply chains.


Syllabus
    • Supply chain concepts

    • Supply chain strategy

    • Relationship management

    • Supplier Selection and Evaluation

    • Supplier Sustainability

    • Supply chain Planning

    • Design & Operating SC

    • Outsourcing Product Design and Manufacturing


Intended learning outcomes

On successful completion of this module you will be able to:

1. Evaluate issues surrounding the development of the right supply chain strategy for the business / product groups.
2. Create strategies for managing the information flows in a supply network in order to reduce the bullwhip effect and the challenges of accurate demand and forecast planning.
3. Evaluate the challenges with improving performance of supply networks and gain familiarity with the application of a variety of supply chain tools to help in the re-design of the SC.
4. Organize the complexities in managing and designing distribution centres so that they support the overall SC strategy and customer value proposition in the market place.
5. Integrate procurement and supplier management for the supply chain to function effectively.

 


Manufacturing Strategy

Aim

    To develop your skills to analyse and manage the direction of a business, to design and develop manufacturing strategy to deliver competitive advantage and plan effective deployment of a strategy.

Syllabus
    • Competitive manufacturing strategy concepts.
    • Benchmarking of manufacturing system performance.
    • Manufacturing strategy in business success.
    • Strategy formation and formulation, leading on to system design.
    • Structured strategy formulation and system design methodologies.
    • Approaches to strategy formulation in differing business contexts.
    • Realisation of new strategies/system designs, including approaches to implementation.
    • Case study on design of competitive manufacturing strategy.
Intended learning outcomes On successful completion of this module you should be able to:

1. Evaluate competitive advantage for manufacturing strategy. 2. Demonstrate manufacturing strategy formulation.
3. Apply a structured methodology to create a competitive manufacturing strategy.
4. Assess the impact of a proposed manufacturing strategy on business performance.

Implementing Effective Change in Manufacturing

Aim

    To prepare you with the knowledge and skills required to influence, lead, and manage feasible change programmes effectively within the manufacturing industry.

Syllabus

    Innovation & Technology.

    Business Finance and Investment Appraisals.

    Business Case Development.

    Project Management.

    Implementing Change.

Intended learning outcomes

On successful completion of this module you will be able to:

1. Analyse the financial performance and financial ratios of manufacturing organisations.
2. Devise a comprehensive business case report covering key areas such project charter, project feasibility, stakeholder communication, scenario analysis, negotiation, procurement, and risk assessment.
3. Develop an awareness of change resistance psychology and organisational culture to aid efforts in managing successful change programmes.
4. Assess the various agile project management tools for their project-specific suitability to aid in the design, planning, implementation, measuring, and sustaining change in manufacturing.
5. Appraise the different roles of innovation and technology, analyse different technologies, and apply innovative problem solving techniques to successfully implementing change programmes in manufacturing.


Teaching team

You will be taught by internationally leading academics and practitioners. This will ensure you are aware of cutting-edge tools, techniques and innovations. The course is directed by an industrial advisory committee comprising senior representatives from leading manufacturing and business organisations. This means the skills and knowledge you acquire are relevant to employer requirements. The Course Director for this programme is Dr Mohamed Afy-Shararah.

Accreditation

The Engineering and Management of Manufacturing Systems MSc is accredited by Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS) and Institution of Engineering & Technology (IET) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer (CEng).

 

Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to show that they have satisfied the educational base for CEng registration.

 

Please note accreditation applies to the MSc award, PgDip and PgCert (if offered) do not meet in full the further learning requirements for registration as a Chartered Engineer.

Your career

Cranfield manufacturing graduates are highly sought after by industry. Many graduates take on appointments with a wide range of manufacturing enterprises or, increasingly, apply their skills to other sectors from from automotive to retail, and from financial services through to health care.

Students have gone into roles including:

  • Analyst.
  • Associate.
  • Manufacturing Engineer.
  • Supply Chain Analyst.
  • Continuous Improvement Manager.
  • Work Area Manager.
  • Operations Manager.
  • Consultant.

Companies that have employed our students include:

  • Amazon.
  • Procter & Gamble.
  • Inverto Consulting (a BCG company).
  • Jaguar Land Rover.
  • Inverto Consulting.
  • Efficio Consulting.
  • Airbus (France).
  • BVI Medical (Mexico).
  • ECM Group (France).
  • CERN (Switzerland).
  • Wavestone (Switzerland).
  • Danone.
  • General Electric.
  • Lufthansa Cargo.
  • Ocado Group.

Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. Support continues after graduation and as a Cranfield alumnus, you have free life-long access to a range of career resources to help you continue your education and enhance your career.

 

Part-time route

We welcome students looking to enhance their career prospects whilst continuing in full-time employment. The part-time study option that we offer is designed to provide a manageable balance that allows you to continue employment with minimal disruption whilst also benefiting from the full breadth of learning opportunities and facilities available to all students. The University is very well located for visiting part-time students from all over the world and offers a range of library and support facilities to support your studies.

As a part-time student you will be required to attend teaching on campus in one-week blocks, for a total of 8 blocks over the 2-3 year period that you are with us. Teaching blocks are typically run during the period from October to June, followed by independent study and project work where contact with your supervisors and cohort can take place in person or online. Students looking to study towards the MSc will commence their studies in the October or March intakes.

We believe that this setup allows you to personally and professionally manage your time between work, study and family commitments, whilst also working towards achieving a Master's degree.

How to apply

Click on the ‘Apply now’ button below to start your online application.

See our Application guide for information on our application process and entry requirements.