Overview
- Start dateFull-time: October. Part-time: throughout the year
- DurationOne year full-time, two-five years part-time
- DeliveryTaught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%
- QualificationMSc, PgDip, PgCert
- Study typeFull-time / Part-time
- CampusCranfield campus
Who is it for?
The course is developed for mechanical and materials engineers who want to engage in hi-tech manufacturing methods to deliver the development of innovative products.
Why this course?
Manufacturing technologies are responsible for the delivery of next-generation products impacting sectors such as automotive and aerospace. You will learn from experts in the fields of composites, coatings, metrology and management to name but a few, providing you with the technical knowledge to deliver and support new product development.
Our group and thesis projects are industrially linked, requiring you to apply your taught knowledge to solve a ‘real-life’ industrial challenge. You will have the opportunity to be supervised by a world leading academic in this area.
Informed by Industry
Some organisations that we regularly work with and can be mentioned are:
- Rolls Royce
- Siemens
- GE
- Safran
The course is directed by an industrial advisory committee comprising senior representatives from leading manufacturing and business organisations. This means the skills and knowledge you acquire are relevant to employer requirements.
Course details
The MSc course comprises eight assessed modules (four core and four elective), in which students gain an understanding of world-class manufacturing technology and management practice, a group project and an individual project.
Course delivery
Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%
Group project
The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.
Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems are concerned.
Individual project
The individual thesis project offers students the opportunity to develop their research capability, depth of understanding and ability to provide world-class technical and business engineering service solutions to real problems in manufacturing.
Modules
Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.
To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.
Course modules
Compulsory modules
All the modules in the following list need to be taken as part of this course.
Introduction to Sustainable Manufacturing
Aim |
To provide an introduction to manufacturing technology and materials. Introduce you to the key skills required to write proposals and understand how to prepare the costs. To familiarise students with teamworking, ethics and concepts. To develop your personal skills in management and team working. |
---|---|
Syllabus |
• Manufacturing technology, introduction to engineering materials life cycles, health, safety and environment. Research techniques including writing proposals and resourcing. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Explain the need and commitment to address professional and ethical responsibilities and a respect for diversity. 2. Critically assess manufacturing technology examples; such as explaining how a part is made, what it is made from and compare properties of the manufacturing process. 3. Demonstrate how to work effectively as a member of a technical team. 4. Prepare a proposal, estimating the project costs and resources, taking into account commercial and industrial constraints. |
Lean Product Development
Aim |
As a Master level course this module has to develop knowledge, critical scientific thinking and hands-on experiences for developing a product. A scholarly approach of product development, project management and evolution, as well as the use of the most suitable material and technology, are expected. Research appropriately into customer and market requirements and their analysis to translate the requirements into product specification. |
---|---|
Syllabus |
· Introduction to Product Development (PD) · Concurrent Engineering · PD Tools and Methods · Lean Product Development · Set-Based Concurrent Engineering (SBCE) · SBCE Industrial Case Studies · PD in Knowledge-based Environment · Trade-Off Curves to enable SBCE · Tutorial PD Project |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Assess the application of product development process in lean environment and addressing global collaboration. 2. Design a process of product development based on the principles of set-based concurrent engineering. 3. Formulate the process of selection of materials and manufacturing processes. 4. Appraise the application of tools and techniques to support product development such as QFD, DFM, DFA, and FMEA. 5. Create and manage product development knowledge to solving product design and development problems and to enable trade-off between design solutions. |
General Management
Aim |
To give you an introduction to some of the key general management, personal management and project management skills needed to influence and implement change. |
---|---|
Syllabus |
Management Accounting Principles and Systems. Personal style and team contribution, interpersonal dynamics, leadership, human and cultural diversity. Project Management: structure and tools for project management. Introduction to standards: awareness of standards, relevant standards (quality, environment and H&S), value of using standards, management of the standard and audit. |
Intended learning outcomes |
On successful completion of this module you will be able to:
|
Elective modules
A selection of modules from the following list need to be taken as part of this course
Composites Manufacturing for High Performance Structures
Aim |
To provide a detailed awareness of current and emerging manufacturing technology for high performance composite components and structures and an understanding of materials selection and the design process for effective parts manufacturing. |
---|---|
Syllabus |
• Practical demonstrations – lab work. • Overview of established manufacturing processes, developing processes, automation and machining. • Introduction to emerging process developments; automation, textile preforming, through thickness reinforcement. • Design for manufacture, assembly techniques and manufacturing cost. • Case studies from aerospace, automotive, motorsport, marine and energy sectors. • DVD demonstrations of all processing routes. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Describe a range of modern manufacturing techniques for thermoset and thermoplastic type composites. 2. Select appropriate manufacturing techniques for a given composite structure/ application and describe current areas of technology development for composites processing. 3. Demonstrate or describe practical handling of prepregs and a range of fibre forms and resins. 4. Use the design process for high performance composite structures and appraise the influence on design to the manufacturing process. 5. Evaluate performance-cost balance implications of materials and process choice. |
Nano Materials and Advanced Composites
Aim |
This module will carry out a critical analysis of how nano materials are used for the significant enhancement of traditional composites for improving structural and functional properties for advanced engineering applications; The module will help you to formulate/construct with necessary knowledge to synthesis new multifunctional composites to fulfil the unmet industrial challenges. |
---|---|
Syllabus |
• Manufacturing high purity nano materials. • Nanomaterials Safety and handling. • Integration of nano materials in traditional glass/carbon fibre composites. • Improving fracture toughness and impact resistance of composites with nano materials. • High performance carbon nanotube fibres as potential replacement of carbon fibres. • Nano materials for improving the surface and functional properties of composites. • Case studies for nano materials reinforced for multiscale composites for aerospace, automotive and marine applications. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Understand, analyse and appraise the different types of manufacturing processes for nano materials. 2. Evaluate the properties, processing of polymer matrix based nanocomposites. 3. Evaluate and recommend the manufacturing route for testing of nano material 4. Formulate the manufacturing and testing process for nano reinforced carbon/glass fibre based multi-scale composites for superior functional and structural properties for advanced engineering sectors. |
Composites Joining, Repair and Serviceability
Aim |
This course will provide you with an industrially useful knowledge on joining and repair of high-performance composite structures. This knowledge will be critical for the through life maintenance of composite components used in range engineering application such as wind turbine blades, aircraft wings and fuselage etc. The course will explore non-destructive testing methods used to detect the damage in composite components which are essential to decide if the repair is needed. |
---|---|
Syllabus |
• Best practices in bonding, bolting and assembly approaches. • Process-induced defects in composite fastening and bonding. • Mechanical fastening options for carbon fibre composites- some selection guidance. • Adhesive bond damage tolerance and failure assessment. • Tailored composite bonded repair. • Self-healing bonding applications. • Aerospace composite repair - regulatory perspective. • Automated machining and surface preparation for composite repair. • Thermoplastic welding. • Laboratory exercise on composite impact damage, NDI and bonded repair. • Visit composite manufacturing and NDI facilities. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Evaluate and analyse the need and requirement for composite integration, repair and joining. 2. Evaluate and recommend a variety of integration, repair and joining procedures in composite structures from fastening, thermoset adhesive bonding to thermoplastic welding. 3. Analyse a range of adhesive bond damage tolerance and failure assessment procedures. |
Introduction to Materials Engineering
Aim |
The aim of this module is to enable you to analyse the structure and properties of materials, to relate fabrication processes with structure and properties, and assess how this determines materials properties, and apply this knowledge to materials in applications. |
---|---|
Syllabus |
• Basic and alloy steels, tensile behaviour of metals, work and precipitation hardening, recovery and recrystallisation. • Structural steels - C-Mn ferrite-pearlite structural steels, specifications and influence of composition, heat treatment and microstructure on mechanical properties. Fracture, weldability and the influence of welding on mechanical properties. • Corrosion Resistant Materials - Stainless steels - austenitic, ferritic, martensitic and duplex stainless steels- compositions, microstructures, properties. • Welding and joining processes, weld metal, heat affected zones and weld cracking. • Non-metallic Materials - Polymers and composites manufacturing issues, physical properties and mechanical behaviour. Structure and properties and applications of ceramics. • Principles underlying electrical and magnetic properties of materials. |
Intended learning outcomes |
On successful completion of this module you should be able to:
1. Analyse material structures on a micro and macro scale, and correlate micro structure to mechanical performance. |
Advanced Welding Processes
Aim |
|
---|---|
Syllabus |
• Laser welding including micro-welding and hybrid processes • Introduction to laser processing • Laser material interactions • Laser powder melting • Laser wire melting • Laser sources, optics and fibre optics • Advanced arc welding processes • Solid state welding processes • Friction welding • Additive manufacture • Advanced resistance welding • Dissimilar material welding • Remote underwater welding • Weld metal engineering • Electron beam welding • Process monitoring • Other laser processes (e.g. laser peening) • Material characteristics and response to laser • Weld metal engineering • Laser safety |
Intended learning outcomes |
On successful completion of this module a student should be able to: 1. Evaluate and compare the physical principles behind the operation of the advanced welding and processing methods e.g. laser, advanced gas metal arc processes, friction based techniques etc. 2. Select the most appropriate welding system for a particular application and analyse the economic benefits. 3. Examine physical and engineering principles behind selective applications for welding processes and critique methods for maximising process efficiency. 4. Appraise recent developments in welding technology and identify where these new processes can be used. |
Additive and Subtractive Manufacturing Technologies
Aim |
To provide you with an understanding of the principles behind some of the most recent developments in the processing of high value added components. There is a strong emphasis on high efficiency and reduced cost in the manufacture of high volume and/or high value added parts using the latest technology based around advanced fabrication, machining processes and additive techniques. The module will cover the physical principles, operating characteristics and practical aspects related to these key technologies. |
---|---|
Syllabus |
• Abrasive machining processes and practice • Non-conventional machining including photochemical machining and associated metal removal and addition processes. • Micro machining and micro moulding. • Machine tool components and machine-materials interactions, metrology. |
Intended learning outcomes |
On successful completion of this module you should be able to:
1. Critically review recent developments in machining and fabrication processes for the production of engineering components and identify their main areas of application and limitations. 2. Describe and apply the relationships between material properties, processing conditions, metrology and component service performance. 3. Analyse how the physical principles behind the operation of these processes can be used to monitor process capability and performance. 4. Apply design rules and fabrication techniques to manufacture micro components. 5. Assess different routes for the high volume manufacture of micro components. |
Surface Science and Engineering
Aim |
|
---|---|
Syllabus |
• Basic principles of electrochemistry and aqueous corrosion processes; corrosion problems in the aerospace industry; general corrosion, pitting corrosion, crevice corrosion, influence of deposits and anaerobic conditions; exfoliation corrosion; corrosion control; high temperature oxidation and hot corrosion; corrosion/mechanical property interactions. • Friction and Wear: Abrasive, erosive and sliding wear. The interaction between wear and corrosion. • Analytical Techniques: X-ray diffraction, TEM, SEM and EDX, WDX analysis, surface analysis by AES, XPS and SIMS. • Surface engineering as part of a manufacturing process. • Integrating coating systems into the design process. • Coating manufacturing processes. • Electro deposition, flame spraying, plasma spray, sol-gel. • Physical vapour deposition, chemical vapour deposition, ion beam. • Coating systems for corrosion and wear protection. • Coating systems for gas turbines. • New coating concepts including multi-layer structures, functionally gradient materials, intermetallic barrier coatings and thermal barrier coatings. |
Intended learning outcomes |
On successful completion of this module you should be able to:
1. Demonstrate a practical understanding of surface engineering as part of the manufacturing process. |
Finite Element Analysis
Aim |
The course is aimed at giving potential Finite Element USERS basic understanding of the inner workings of the method. |
---|---|
Syllabus |
• Background to Finite Element Methods (FEM) and its application. |
Intended learning outcomes |
On successful completion of this module you should be able to:
|
Operations Management
Aim |
To introduce you to core factors of managing operations. |
---|---|
Syllabus |
|
Intended learning outcomes |
On successful completion of this module you will be able to: 1. Assess the key capacity determinant in an operation, and carry out an analysis to develop the most appropriate approach in response to changes in demand. 2. Select and apply appropriate approaches and tools to determine standards and improve processes. 3. Determine the information needed to support businesses, in particular manufacturing operations. 4. Assess and select appropriate Just-in-Time (JIT) tools to improve operations. 5. Develop appropriate quality systems for the whole of their supply chain – from supplier, through operations to customers – and ensure these systems are sustained and a culture of continuous improvement prevails. |
Operations Analysis
Aim |
To develop your rigorous and logical application of tools and techniques for the design and control of operational systems. |
---|---|
Syllabus |
• Lean Manufacturing elements such as Value Stream Mapping and Waste identification. • Analysis of systems. Systems thinking. • P-FMEA. Business process fundamentals and the process review. • Performance measurement. Responding to and improving reliability. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Combine tools for assessing, controlling and improving processes, and their strengths and limitations. 2. Analyse the relationship between work-in-process, lead-time and output in a production system and the impact of variability. 3. Decide the appropriate Six Sigma, Statistical Process Control tools and techniques and lean manufacturing approaches for different manufacturing cases. 4. Develop a ‘systems view’ of manufacturing and servicing operations. 5. Critically appraise unreliability and maintenance techniques. |
Manufacturing
Aim |
The aim of the Manufacturing module is to provide you with a range of issues associated with aircraft manufacturing. The module covers mostly technical, but with some management topics related to manufacturing processes and technologies. Topics include material and manufacturing process selection, modern manufacturing technologies such as 3D printing and composite manufacture. |
---|---|
Syllabus |
• Manufacturing systems. • Materials and manufacturing process selection. • Joining technologies. • Composite manufacture. • Automation technologies. • Lifecycle analysis in manufacturing. • Manufacturing cost engineering. • Quality engineering. |
Intended learning outcomes |
On successful completion of this module you should be able to: |
Teaching team
You will be taught by internationally leading academics and practitioners, as well leading industrialists specialising in their careers. This will ensure you are aware of cutting-edge tools, techniques and innovations. The Course Director and Admissions Tutor for this programme is Dr Jeff Rao.
![]()
Studying at Cranfield gave me a lot of opportunities. The best example is the group project which probably wouldn't be possible at any other university. This allowed me to tackle industry problems. Cranfield is quite unique in this sense, having more industrial engagements.
Rushabh Shah, Development Engineer
Accreditation
The Manufacturing Technology and Management MSc is accredited by the Institution of Mechanical Engineers (IMechE), Royal Aeronautical Society (RAeS), Institution of Engineering & Technology (IET) and Institute of Minerals & Mining (IOM3) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer (CEng).
Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to show that they have satisfied the educational base for CEng registration.
Please note accreditation applies to the MSc award, PgDip and PgCert (if offered) do not meet in full the further learning requirements for registration as a Chartered Engineer.
Your career
Takes you on to essential leadership roles in a range of sectors that are required to drive UK high value manufacturing forward and provide the vision for future prosperity.
Cranfield Careers and Employability Service
Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. We will support you in the job application process for up to three years after graduation.
How to apply
Applications need to be made online. Click the 'Apply now' button at the top of this page.
Once you have set up an account you will be able to create, save and amend your application form before submitting it.