Apply by 28 March 2024 and you could be eligible for a 5% discount on your tuition fees.
Overview
- Start dateFull-time: October. Part-time: throughout the year
- DurationFull-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years
- DeliveryTaught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%
- QualificationMSc, PgDip, PgCert
- Study typeFull-time / Part-time
- CampusCranfield campus
Who is it for?
There is a need for engineering graduates with specialist skills to develop new materials for next generation aircraft and the future aerospace industry. During this course you will cover the improvement and development of materials for aviation applications and space systems, including materials for airframe, aeroengine and the increased use of smart and functional materials.
Why this course?
The course combines Cranfield's long-standing expertise for delivering high-quality Masters' programmes in both aerospace and materials. Our courses receive strong support from the global aerospace industry, both the Original Equipment Manufacturers (OEM) such as Airbus, BA systems, Safran and Rolls-Royce, as well as their tiers of supplier. There is a strong emphasis on applying knowledge in the industrial environment and all teaching is in the context of industrial application.
Informed by Industry
The course is designed to meet the training needs of the aerospace industry and has a strong input from experts in their sector. The Industrial Advisory Board meets during the year to advise on course content, acquisition skills and other attributes which are deemed desirable from graduates of the course. Panel members include professionals from organisations such as BAE Systems, SAFRAN and Rolls-Royce amongst others.
Course details
The modules include lectures, workshops, case studies, tutorials and company visits.
Course delivery
Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%
Group project
The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.
Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems are concerned.
Individual project
The individual thesis project, usually in collaboration with an external organisation, offers students the opportunity to develop their research capability, depth of understanding and ability to provide materials technology and engineering solutions to real problems in aerospace.
Modules
Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.
To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.
Course modules
Compulsory modules
All the modules in the following list need to be taken as part of this course.
Introduction to Materials Engineering
Aim |
|
---|---|
Syllabus |
|
Intended learning outcomes |
On successful completion of this module you should be able to:
1. Analyse material structures on a micro and macro scale, and correlate micro structure to mechanical performance. |
Sustainable Aerospace Materials
Aim |
To evaluate sustainable materials issues and challenges in processing and performance requirements relevant to aerospace and space applications. |
---|---|
Syllabus |
• Structural metals, lightweight alloys eg aluminium, magnesium, titanium. • Ceramic and ceramic matrix composites. • Structures containing both carbon fibre reinforced composite and metal (hybrids) and composite performance. • Sustainable and critical aerospace materials. • Maintenance and vehicle heath monitoring. • Operative environment and corrosion issues. • Phases of a product life cycle. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Explain requirements from classes of aerospace materials for airframe, aero engine and space materials discussing suitability in the context of specific applications. 2. Select the most appropriate material for parts of a range of aerospace and space craft components considering the likely requirements and issues of sustainability. 3. Describe methods of processing aerospace materials particularly joining issues and propose suitable routes for selected applications. 4. Appraise manufacturer’s requirements in the context of product life cycle, maintenance and health monitoring. |
Composites Manufacturing for High Performance Structures
Aim |
To provide a detailed awareness of current and emerging manufacturing technology for high performance composite components and structures and an understanding of materials selection and the design process for effective parts manufacturing. |
---|---|
Syllabus |
• Practical demonstrations – lab work. • Overview of established manufacturing processes, developing processes, automation and machining. • Introduction to emerging process developments; automation, textile preforming, through thickness reinforcement. • Design for manufacture, assembly techniques and manufacturing cost. • Case studies from aerospace, automotive, motorsport, marine and energy sectors. • DVD demonstrations of all processing routes. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Describe a range of modern manufacturing techniques for thermoset and thermoplastic type composites. 2. Select appropriate manufacturing techniques for a given composite structure/ application and describe current areas of technology development for composites processing. 3. Demonstrate or describe practical handling of prepregs and a range of fibre forms and resins. 4. Use the design process for high performance composite structures and appraise the influence on design to the manufacturing process. 5. Evaluate performance-cost balance implications of materials and process choice. |
Functional Materials
Aim |
To provide you with specialist training in functional materials and devices for applications in aerospace and space. The module will explore the way in which different functional and nano materials can be used and structured for energy, transport and aerospace. |
---|---|
Syllabus |
o Electrochemical energy storage, alternative energy storage.
• Materials and devices used in aerospace
• Materials and devices used in aerospace
|
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Describe the operation of a range of small sensing devices derived from functional materials. 2. Select and develop a sensing solution for different environmental situations. 3. Design or critique devices for a specific application in the context of aerospace. 4. Critically evaluate novel devices for sensing solutions. |
Failure of Materials and Structures
Aim |
To provide an understanding of why materials and structures fail and how failure conditions can be predicted in metallic and non-metallic components and structures. |
---|---|
Syllabus |
• LEFM and crack tip stress fields, stress concentration, stress intensity, plane stress and plane strain. Fracture toughness in metallic materials, fracture toughness testing, calculations of critical defect sizes and failure stress. Crack tip plastic zones; the HRR field, CTOD, J Elastic- plastic failure criteria. Defect assessment failure assessment diagrams. • Fracture of rigid polymers and standard tests for fracture resistance of polymers. Delamination fatigue tests. Emerging CEN/ISO standards, current ESIS test procedures. • Crack extension under cyclic loading; Regimes of fatigue crack growth; Influence of material properties and crack tip plastic zones; Calculation of crack growth life and defect assessment in fatigue; Crack closure and variable amplitude loading; Short cracks and the limits of LEFM. • Software design tools for fatigue crack growth. • Static loading-stress corrosion cracking; corrosion fatigue. |
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Assess the different regimes and processes of failure of cracked bodies and describe the factors controlling them and the boundaries and limits between them. 2. Explain the principles of Linear Elastic Fracture Mechanics (LEFM) and demonstrate their application to cracks in brittle, ductile and fibre composites through calculation of static failure conditions. 3. Calculate the limits of applicability of LEFM and apply modified predictive tools such as elastic-plastic fracture mechanics and failure assessment diagrams for calculation of failure. 4. Appraise fracture mechanics to failure of cracked bodies under cyclic loads and under aggressive chemical environments to evaluate and predict service lives of structures. 5. Evaluate laboratory fracture mechanics data and critically assess its validity for application to particular engineering situations. |
Finite Element Analysis
Aim |
|
---|---|
Syllabus |
|
Intended learning outcomes |
On successful completion of this module you should be able to: 1. Recognise finite element analysis (FEA) methodology and uses by comparing principles, assumptions, and case studies to state-of-the-art. |
Materials Selection
Aim |
The aim of this module is to provide you with the knowledge and skills required to enable them to carry out the selection of appropriate materials for a wide range of engineering and other applications. The module also encourages the use of knowledge of a range of materials properties and skills acquired during other modules on the course. |
---|---|
Syllabus |
• Specific polymers and composites: The structure, properties, processing characteristics and applications for the commercially important polymers. General classes of polymers: commodity, engineering and speciality thermoplastics, thermosetting resins, rubbers. Variation in behaviour within families of polymers: crystallinity, rubber toughened grades; reinforced and filled polymers. • Specific metals, alloys: The metallurgy, properties, applications and potentialities of metals and alloys in a wide variety of engineering environments. Specific metals and alloys both for general use and for more demanding applications. Titanium, nickel and magnesium based alloys, intermetallics, steels. The design of alloys, current developments in the field of light alloys, steels, high temperature materials. Development of current aerospace aluminium alloys: precipitation hardening, effect of precipitates on mechanical properties, designation of aluminium alloys, alloys based on Al-Cu, alloys based on Al-Zn. Applications. • Introduction to engineering ceramics: introduction to particulate engineering, thermodynamic and kinetic requirements for powder processing, Interparticle forces. • Ceramic forming techniques, Sintering and densification, processing related properties of ceramics: structural and functional. |
Intended learning outcomes |
On successful completion of this module you should be able to demonstrate:
1. Recognise and examine a wide range of materials and their properties that will enable students to undertake materials selection effectively, using appropriate reference sources (books, data sheets, computer databases etc). |
Surface Science and Engineering
Aim |
|
---|---|
Syllabus |
• Basic principles of electrochemistry and aqueous corrosion processes; corrosion problems in the aerospace industry; general corrosion, pitting corrosion, crevice corrosion, influence of deposits and anaerobic conditions; exfoliation corrosion; corrosion control; high temperature oxidation and hot corrosion; corrosion/mechanical property interactions. • Friction and Wear: Abrasive, erosive and sliding wear. The interaction between wear and corrosion. • Analytical Techniques: X-ray diffraction, TEM, SEM and EDX, WDX analysis, surface analysis by AES, XPS and SIMS. • Surface engineering as part of a manufacturing process. • Integrating coating systems into the design process. • Coating manufacturing processes. • Electro deposition, flame spraying, plasma spray, sol-gel. • Physical vapour deposition, chemical vapour deposition, ion beam. • Coating systems for corrosion and wear protection. • Coating systems for gas turbines. • New coating concepts including multi-layer structures, functionally gradient materials, intermetallic barrier coatings and thermal barrier coatings. |
Intended learning outcomes |
On successful completion of this module you should be able to:
1. Demonstrate a practical understanding of surface engineering as part of the manufacturing process. |
Teaching team
You will be taught by experts from Cranfield and industry with substantial experience in teaching, project supervision, research and consultancy. The academics have published in leading journals and books and worked closely with world-class manufacturers. The Course Director for this programme is Dr Sue Impey and the Admissions Tutor for this programme is Dr Iva Chianella.
Accreditation
The Aerospace Materials MSc is accredited by the Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS), Institute of Materials, Minerals & Mining (IOM3) and Institution of Engineering & Technology (IET) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer (CEng).
Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to show that they have satisfied the educational base for CEng registration.
Please note accreditation applies to the MSc award, PgDip and PgCert (if offered) do not meet in full the further learning requirements for registration as a Chartered Engineer.
In 2019, Cranfield Manufacturing and Materials was honoured to receive a commemorative award from the Institute of Materials, Minerals and Mining (IOM3) recognising continued accreditation for over 15 years.
Your career
This qualification takes you on to senior engineering positions in the aerospace industry with a focus on exploiting next generation materials. Many graduates find employment with one of their project sponsors.
On completion of this MSc, graduates have a broader network of global contacts, increased opportunities for individual specialism and a wide range of careers options involving materials with responsibilities in research, development, design, engineering, consultancy and management.
Our graduates find careers with global industries alongside innovative start-ups and SMEs which have included:
- Airbus,
- Assystem UK
- MAIA Entreprises
- Marshalls Aerospace
- Ricardo
- Rolls-Royce
- Safran
- Sensor Coating Systems Ltd.
- Storm Aviation
- Tata Steel
Some graduates prefer to stay in academia and enter into research at universities across Europe. Most continue in a career associated with engineering and materials, seeking solutions to industries' challenges across the whole spectrum of civil, electrical, energy, industrial, manufacturing and transportation activities.
Explore careers in manufacturing with our 'Making an impact in the manufacturing industry' brochure. This brochure highlights journeys taken by professionals in the manufacturing industry through different roles and technologies, as well as providing some key tips to guide you along the way.
Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. Support continues after graduation and as a Cranfield alumnus, you have free life-long access to a range of career resources to help you continue your education and enhance your career.
How to apply
Click on the ‘Apply now’ button below to start your online application.
See our Application guide for information on our application process and entry requirements.
My favourite thing about studying at Cranfield is the opportunities you have to work closely with business leaders such as Rolls Royce. As our project sponsor, we visited their work site which gave us a better understanding of the real working conditions. It was invaluable experience.
This course at Cranfield is very well-known in the Aerospace field. The group project allowed me to understand what working for a company in industry would be like and to co-operate with others in my group to find a solution to a real problem. I don’t know any other university that has this opportunity. My dream was to work in the aerospace field and I knew that Cranfield would enable me to do this as I have now secured a job.