Within a rapidly evolving aerospace industry, the need to adapt and innovate aerospace manufacturing production processes is becoming increasingly apparent. This, in combination with a need to meet faster time-to-market demands for increasingly complex, interconnected and feature-rich aerospace products, means there is a requirement for graduates who are well-equipped to manage the related manufacturing processes.

Aerospace manufacturing is responsible for the design, development, and production of aircraft, spacecraft, and their components. This industry is constantly innovating and pushing the boundaries of technology, which makes it an exciting and rewarding field in which to work. Specialist skills of aerospace production systems are vital to drive productivity improvements.

On the MSc in Aerospace Manufacturing, you will gain the sought-after capabilities to manage major improvement programmes in the aerospace manufacturing industry or instigate intervention that delivers improvements to the performance of the businesses.

Overview

  • Start dateFull-time: October or March. Part-time: throughout the year
  • DurationFull-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years
  • DeliveryTaught modules 40%, Group project 20%, Individual project 40%
  • QualificationMSc, PgDip, PgCert
  • Study typeFull-time / Part-time
  • CampusCranfield campus

Who is it for?

We welcome students from a range of backgrounds, including undergraduate degrees in science, technology, engineering and mathematics. We also welcome students who have spent time in industry and are looking to further their education.

Why this course?

The MSc in Aerospace Manufacturing combines Cranfield's long standing expertise for delivering high-quality Masters' programmes in both aerospace and manufacturing. You will learn from a range of modules, from how to assemble aircraft, through to manufacturing and systems engineering, as well as developing your management capabilities. Through elective modules and project work, you will be able to tailor the learning experience to your unique areas of interest, helping you to develop a competitive edge in the employment market.

The course receives strong support from the global aerospace industry, both from the Original Equipment Manufacturers (OEM) such as Airbus and Rolls-Royce, as well as their tiers of supplier. We ensure that there is a strong emphasis on applying the knowledge that you acquire during the course in the industrial environment in which you will work, and all teaching is in the context of industrial application.

As a student, you will benefit from our wide range of equipment, analysis tools and specialist software packages. The course objectives are achieved through a carefully integrated and structured series of eight one-week assessed modules, a group project and an individual project.

Informed by industry

Our courses are designed to meet the training needs of industry and have a strong input from experts in their sector. Students who have excelled have their performances recognised through course awards. The awards are provided by high profile organisations and individuals, and are often sponsored by our industrial partners. Awards are presented on Graduation Day.

Course details

The course comprises eight modules (five compulsory and three electives), a group project and an individual project.

The modules include lectures, workshops, case studies, tutorials and company visits. Students need to complete a mix of modules that are fundamental to aerospace manufacturing systems and modules that are technology related.

Course delivery

Taught modules 40%, Group project 20%, Individual project 40%

Group project

The group project experience is highly valued by both students and prospective employers. Teams of students work to solve an industrial problem. The project applies technical knowledge and provides training in teamwork and the opportunity to develop non-technical aspects of the taught programme. Part-time students can prepare a dissertation on an agreed topic in place of the group project.

Industrially orientated, our team projects have support from external organisations. As a result of external engagement Cranfield students enjoy a higher degree of success when it comes to securing employment. Prospective employers value the student experience where team working to find solutions to industrially based problems is concerned.

View our Manufacturing Group Projects 2019 booklet

Individual project

The individual thesis project, usually in collaboration with industry, offers students the opportunity to develop their research capability, depth of understanding and ability to provide solutions to real problems in aerospace manufacturing production systems.


Modules

Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.


Course modules

Compulsory modules
All the modules in the following list need to be taken as part of this course.

Aircraft Assembly

Aim

    To develop your understanding of aircraft assembly methods and techniques that are effective and efficient and at the same time meet quality and safety requirements.


Syllabus
    • Joining techniques: bolts, rivets.
    • Assembly jigs and fixtures.
    • Aircraft assembly layouts and processes.
    • Automated fastening machines.
    • Sealants and adhesives.
    • Automation in aircraft assembly.
    • Application of metrology.
    • Quality processes.
    • Certification and validation.
    • Technology introduction.
Intended learning outcomes On successful completion of this module you should be able to:

1. Apply comprehensive knowledge of manufacturing flow and layout to aircraft assembly.
2. Demonstrate understanding of aircraft structures (fuselage, wing).
3. Appraise different advanced joining techniques used in aircraft assembly.
4. Formulate a holistic approach to analysis and design of aircraft assembly processes and their introduction.
5. Understand the future technologies that will influence the assembly of next generation aircraft.

Manufacturing Strategy

Aim

    To develop your skills to analyse and manage the direction of a business, to design and develop manufacturing strategy to deliver competitive advantage and plan effective deployment of a strategy.

Syllabus
    • Competitive manufacturing strategy concepts.
    • Benchmarking of manufacturing system performance.
    • Manufacturing strategy in business success.
    • Strategy formation and formulation, leading on to system design.
    • Structured strategy formulation and system design methodologies.
    • Approaches to strategy formulation in differing business contexts.
    • Realisation of new strategies/system designs, including approaches to implementation.
    • Case study on design of competitive manufacturing strategy.
Intended learning outcomes On successful completion of this module you should be able to:

1. Evaluate competitive advantage for manufacturing strategy. 2. Demonstrate manufacturing strategy formulation.
3. Apply a structured methodology to create a competitive manufacturing strategy.
4. Assess the impact of a proposed manufacturing strategy on business performance.

Manufacturing Systems Engineering

Aim

    To develop your understanding of complex manufacturing systems engineering through the application of different modelling and simulation tools, techniques and methodologies with a view to analyse and (re)design manufacturing systems that maximise value to customers while minimising waste.

Syllabus
    • Introduction to modelling: taxonomy, overview of methods and techniques.
    • Design of manufacturing layouts.
    • Group Technology & Cellular manufacturing in the context of Human centred factory design.
    • Manufacturing Systems modelling using discrete-event simulation, Systems dynamics and Agent-based simulation techniques and methodologies.
    • Case study Analysis of manufacturing systems using simulation.
Intended learning outcomes On successful completion of this module you should be able to:

1. Differentiate the applicability of different layout types applicable in manufacturing businesses.
2. Assess how production layout and system design influences productivity and, in particular, appraise the effectiveness of cellular configurations.
3. Design a graphical simulation model using an industry leading discrete-event simulation tool.
5. Contrast discrete-event simulation to other modelling techniques especially in addressing emerging manufacturing paradigms.
6. Devise an experimental procedure and interpret the consequential results of the simulation model.

Operations Management

Aim

    To introduce you to core factors of managing operations.


Syllabus
    • An introduction to manufacturing and service activities.
    • Capacity, demand and load; identifying key capacity determinant; order-size mix problem; coping with changes in demand.
    • Standard times, and how to calculate them; process analysis and supporting tools; process simplification.
    • What quality is; standards and frameworks; quality tools; quality in the supply chain.
    • Scheduling rules; scheduling and nested set-ups.
    • Roles of inventory; dependent and independent demand; Economic Order Quantity; uncertain demand; inventory management systems and measures.
    • Information systems – at operational, managerial, and strategic levels; bills of material; MRP, MPRll and ERP systems.
    • Ohno’s 7 wastes; Just-in-Time systems (including the Toyota Production System, and Kanbans).
    • Class discussion of cases, exercises, and videos to support this syllabus.
Intended learning outcomes On successful completion of this module you will be able to:

1. Assess the key capacity determinant in an operation, and carry out an analysis to develop the most appropriate approach in response to changes in demand.
2. Select and apply appropriate approaches and tools to determine standards and improve processes.
3. Determine the information needed to support businesses, in particular manufacturing operations.
4. Assess and select appropriate Just-in-Time (JIT) tools to improve operations.
5. Develop appropriate quality systems for the whole of their supply chain – from supplier, through operations to customers – and ensure these systems are sustained and a culture of continuous improvement prevails.

Supply Chain Management

Aim

    To introduce you to the wider issues surrounding the management and optimisation of supply chains.


Syllabus
    • Supply chain concepts

    • Supply chain strategy

    • Relationship management

    • Supplier Selection and Evaluation

    • Supplier Sustainability

    • Supply chain Planning

    • Design & Operating SC

    • Outsourcing Product Design and Manufacturing


Intended learning outcomes

On successful completion of this module you will be able to:

1. Evaluate issues surrounding the development of the right supply chain strategy for the business / product groups.
2. Create strategies for managing the information flows in a supply network in order to reduce the bullwhip effect and the challenges of accurate demand and forecast planning.
3. Evaluate the challenges with improving performance of supply networks and gain familiarity with the application of a variety of supply chain tools to help in the re-design of the SC.
4. Organize the complexities in managing and designing distribution centres so that they support the overall SC strategy and customer value proposition in the market place.
5. Integrate procurement and supplier management for the supply chain to function effectively.

 


Elective modules
One of the modules from the following list needs to be taken as part of this course.

Additive and Subtractive Manufacturing Technologies

Aim

    To provide you with an understanding of the principles behind some of the most recent developments in the processing of high value added components. There is a strong emphasis on high efficiency and reduced cost in the manufacture of high volume and/or high value added parts using the latest technology based around advanced fabrication, machining processes and additive techniques. The module will cover the physical principles, operating characteristics and practical aspects related to these key technologies.

Syllabus
    • Metal cutting processes and practice.
    • Abrasive machining processes and practice
    • Non-conventional machining including photochemical machining and associated metal removal and addition processes.
    • Micro machining and micro moulding.
    • Machine tool components and machine-materials interactions, metrology.
Intended learning outcomes
On successful completion of this module you should be able to:

1. Critically review recent developments in machining and fabrication processes for the production of engineering components and identify their main areas of application and limitations.
2. Describe and apply the relationships between material properties, processing conditions, metrology and component service performance.
3. Analyse how the physical principles behind the operation of these processes can be used to monitor process capability and performance.
4. Apply design rules and fabrication techniques to manufacture micro components.
5. Assess different routes for the high volume manufacture of micro components.

Advanced Welding Processes

Aim
    The aim of this module is to provide you with an understanding of the principles behind the most recent developments in welding processes. There is a strong emphasis on laser welding, as well as recent developments in arc, friction and resistance welding. The module will cover the operating principles, characteristics and practical applications of each process.
Syllabus
    • Fundamentals of lasers, optics and fibre optics.
    • Laser welding including micro-welding and hybrid processes.
    • Introduction to laser processing.
    • Laser material interactions.
    • Laser powder melting.
    • Laser wire melting.
    • Laser sources, optics and fibre optics.
    • Advanced arc welding processes.
    • Solid state welding processes.
    • Friction welding.
    • Additive manufacture.
    • Advanced resistance welding.
    • Dissimilar material welding.
    • Remote underwater welding.
    • Weld metal engineering.
    • Advanced electron beam welding.
    • Advanced cladding.
    • Process monitoring.
    • Other laser processes (e.g. laser peening).
    • Material characteristics and response to laser.
    • Weld metal engineering.
    • Laser safety.
Intended learning outcomes

On successful completion of this module you should be able to:

  1. 1. Evaluate and compare the physical principles behind the operation of the advanced welding and processing methods e.g. laser, advanced gas metal arc processes, friction based techniques etc.
  2. 2. Select the most appropriate welding system for a particular application and analyse the economic benefits.
  3. 3. Examine physical and engineering principles behind selective applications for welding processes and critique methods for maximising process efficiency.
  4. 4. Appraise recent developments in welding technology and identify where these new processes can be used.

Composites Manufacturing for High Performance Structures

Aim

    ​To provide a detailed awareness of current and emerging manufacturing technology for high performance composite components and structures and an understanding of materials selection and the design process for effective parts manufacturing.

Syllabus
    • Background to thermosetting and thermoplastic polymer matrix composites.
    • Practical demonstrations – lab work.
    • Overview of established manufacturing processes, developing processes, automation and machining.
    • Introduction to emerging process developments; automation, textile preforming, through thickness reinforcement.
    • Design for manufacture, assembly techniques and manufacturing cost.
    • Case studies from aerospace, automotive, motorsport, marine and energy sectors.
Intended learning outcomes

On successful completion of this module you should be able to:

  1. 1. Compare manufacturing processes employed for thermosetting resin composites and thermoplastic resin composites.
  2. 2. Propose appropriate manufacturing techniques for a given composite structure/ application and identify current areas of technology development for composites processing.
  3. 3. Differentiate between handling and use of prepregs and a range of fibre forms and resins for manufacture of high performance composite structures.
  4. 4. Apply the design process for high performance composite structures and appraise the influence on design to the manufacturing process.
  5. 5. Evaluate performance-cost balance implications of materials and process choice.

Failure of Materials and Structures

Aim

    To provide an understanding of why materials and structures fail and how failure conditions can be predicted in metallic and non-metallic components and structures.

Syllabus
    • Overview of failure behaviour of cracked bodies; crack size influence, brittle and ductile behaviour; influence of material properties. Cyclic loading and chemical environment. Thermodynamic criteria and energy balance; Griffith’s approach, modifications by Orowan. Strain energy release rate, compliance, applications to fibre composites.
    • LEFM and crack tip stress fields, stress concentration, stress intensity, plane stress and plane strain. Fracture toughness in metallic materials, fracture toughness testing, calculations of critical defect sizes and failure stress. Crack tip plastic zones; the HRR field, CTOD, J Elastic- plastic failure criteria. Defect assessment failure assessment diagrams.
    • Fracture of rigid polymers and standard tests for fracture resistance of polymers. Delamination fatigue tests. Emerging CEN/ISO standards, current ESIS test procedures.
    • Crack extension under cyclic loading; Regimes of fatigue crack growth; Influence of material properties and crack tip plastic zones; Calculation of crack growth life and defect assessment in fatigue; Crack closure and variable amplitude loading; Short cracks and the limits of LEFM.
    • Software design tools for fatigue crack growth.
    • Static loading-stress corrosion cracking; corrosion fatigue.
Intended learning outcomes On successful completion of this module you should be able to:

1. Assess the different regimes and processes of failure of cracked bodies and describe the factors controlling them and the boundaries and limits between them.
2. Explain the principles of Linear Elastic Fracture Mechanics (LEFM) and demonstrate their application to cracks in brittle, ductile and fibre composites through calculation of static failure conditions.
3. Calculate the limits of applicability of LEFM and apply modified predictive tools such as elastic-plastic fracture mechanics and failure assessment diagrams for calculation of failure.
4. Appraise fracture mechanics to failure of cracked bodies under cyclic loads and under aggressive chemical environments to evaluate and predict service lives of structures.
5. Evaluate laboratory fracture mechanics data and critically assess its validity for application to particular engineering situations.

Operations Analysis

Aim

    To develop your skills to a rigorous and logical application of tools and techniques for the design and control operational systems.

Syllabus

    • Six Sigma, Process capability, common and special cause variability, control charts, acceptance sampling.

    • Lean Manufacturing elements such as Value Stream Mapping and Waste identification.

    • Analysis of systems to produce simple models. IDEF0 and IDEF3 and their application. Business process fundamentals and the process review. Improvement procedures, modelling methods and process models. Performance measurement. Responding to and improving reliability.

Intended learning outcomes On successful completion of this module you will be able to:

1) Combine tools for assessing, controlling and improving processes, and their strengths and limitations. 
2) Analyze the relationship between work-in-process, lead-time and output in a production system and the impact of variability. 
3) Decide the appropriate Six Sigma, Statistical Process Control tools and techniques and lean manufacturing approaches for different manufacturing cases. 
4) Develop a ‘systems view’ of manufacturing and servicing operations. 
5) Integrate unreliabilityin maintenance techniques can be deployed. 
6) Critically appraise appropriate performance measurement system deployment. 

Teaching team

You will be taught by experts from Cranfield and industry with substantial experience in teaching, project supervision, research and consultancy. The academics have published in leading journals and books and have worked closely with world-class manufacturers. The Course Director for this programme is Dr Konstantinos Georgarakis.

Accreditation

The Aerospace Manufacturing MSc is accredited by the Institution of Mechanical Engineers (IMechE), the Royal Aeronautical Society (RAeS) and Institution of Engineering & Technology (IET) on behalf of the Engineering Council as meeting the requirements for further learning for registration as a Chartered Engineer (CEng).

Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to show that they have satisfied the educational base for CEng registration.

Please note accreditation applies to the MSc award, PgDip and PgCert (if offered) do not meet in full the further learning requirements for registration as a Chartered Engineer.

Your career

This qualification takes you on to a wide range of aerospace manufacturing roles such as management, operations, logistics and technology-related functions within global aerospace manufacturing organisations. Many graduates find employment with one of their project sponsors.

Students from this course have gone into roles including:

Aeronautical Engineer
Aerospace Manufacturing Engineer
Composite Manufacturing Engineer
Mechanical and automation Engineer
Mechanical Engineer
Production Leader
Zero Emission Prototype Manufacturing

Companies that employ our students include:

Accenture Air France
Airbus Collins Aerospace
Electrolux Deloitte Consulting
Turkish Aerospace Rolls-Royce
Tyrol Air Ambulance  

Explore careers in manufacturing with our 'Making an impact in the manufacturing industry' brochure. This brochure highlights journeys taken by professionals in the manufacturing industry through different roles and technologies, as well as providing some key tips to guide you along the way.

Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. Support continues after graduation and as a Cranfield alumnus, you have free life-long access to a range of career resources to help you continue your education and enhance your career.

 

Part-time route

We welcome students looking to enhance their career prospects whilst continuing in full-time employment. The part-time study option that we offer is designed to provide a manageable balance that allows you to continue employment with minimal disruption whilst also benefiting from the full breadth of learning opportunities and facilities available to all students. The University is very well located for visiting part-time students from all over the world and offers a range of library and support facilities to support your studies.

As a part-time student you will be required to attend teaching on campus in one-week blocks which typically run during the period from October to March depending on the course, followed by independent study and project work where contact with your supervisors and cohort can take place in person or online.

We believe that this setup allows you to personally and professionally manage your time between work, study and family commitments, whilst also working towards achieving a Master's degree.

How to apply

Click on the ‘Apply now’ button below to start your online application.

See our Application guide for information on our application process and entry requirements.

This course has helped me to stand out from others as the majority of master’s courses in Europe are generic engineering, whereas here you have much more specific courses that can help you to specialise. I think that’s something that companies really appreciate which has in turn has benefited my career.

Cranfield is the key that can open you the door to the real life environment and if you are willing to work hard to show the world what you are capable of, they will see your true potential and bet for you.

What I have enjoyed about Cranfield University so far is definitely the people! People at Cranfield, whether it's the academic staff, non-academic staff or students, they make Cranfield better.

I really like the structure of the course and the lecturers. I completed my undergrad at another university in the UK and throughout the 3 years I only met the course director probably once or twice. However, it is very different here with my current course director, Dr. Konstantinos Georgarakis. As the course rep, he is always open to my concerns, suggestions and my colleagues find him very approachable.