Study an Energy and Power MSc at Cranfield

A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Students will learn project management, design, computer-aided engineering, operation and optimisation of machinery, structural mechanics and integrity making them suited to a future career in industry, government or research. Why study Energy and Power at Cranfield? - hear from Dr Gill Drew.

mechanical engineering

At a glance

  • Start dateFull-time: October. Part-time: October
  • DurationOne year full-time; two-three years part-time
  • DeliveryTaught modules 40% Group Project 20% Individual Research Project 40%
  • QualificationMSc, PgDip, PgCert
  • Study typeFull-time / Part-time

Who is it for?

Advanced Mechanical Engineering at Cranfield is unique in that it offers  you a broad range of mechanical engineering projects with the added component of a management flavour. This provides the opportunity for you to enhance your mechanical engineering skill with a view to developing your career in the management of large engineering projects.

In addition to management, communication, team work and research skills, you will attain at least the following learning outcomes from this degree course:

  • Demonstrate knowledge, fundamental understanding and critical awareness of advanced mechanical engineering techniques necessary for solutions in the transport and energy sectors
  • Demonstrate systematic knowledge across appropriate advanced technologies and management issues to provide solutions for international industries and/or research organisations
  • Demonstrate the ability to acquire, critically assess the relative merits, and effectively use appropriate information from a variety of sources.

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment. The MSc in Advanced Mechanical Engineering takes you onto a challenging career in industry, government or research. The course reflects the strengths and reputation of Cranfield particularly in the energy, transport and management sectors. Graduates of this course have been successful in gaining employment in the following roles:

  • Mechanical Design Engineer at Siemens
  • Production Line Supervisor & Lean Implementer at GKN Land Systems
  • Staff Engineer at BPP Technical Services Ltd working on offshore oil and gas engineering.
  • Engineer at Det Norske Veritas
  • Management Associate at BMW Group UK Limited
  • Project Engineer at BASF Coatings S.A.

Cranfield Careers Service
Our Careers Service can help you find the job you want after leaving Cranfield. We will work with you to identify suitable opportunities and support you in the job application process for up to three years after graduation.We have been providing Masters level training for over 20 years. Our strong reputation and links with potential employers provide you with outstanding opportunities to secure interesting jobs and develop successful careers. The increasing interest in sustainability and corporate and social responsibility has also enhanced the career prospects of our graduates.

Why this course?

The MSc in Advanced Mechanical Engineering is differentiated from other courses available primarily by its industrial context through the strong links we have with national and international industry. We build our industrial links through research and consultancy, which allows us to provide practical and current examples to help illustrate learning throughout the course.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. We are very well located for visiting part-time students from all over the world, and offer a range of library and support facilities to support your studies. This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

This degree is particularly industrially focused; although the course does not at present have an industrial advisory board, the course staff are heavily involved in industrially funded and oriented research and development.

The Head of Department, for example, sits on the IMechE Offshore Engineering committee, two BSI committees, the Engineering Integrity Society and is Chairman of the International Ship and Offshore Structures Congress Offshore, Renewable Energy Committee. Course content is reviewed annually by the course team and project/group work is by and large related to the Department's industrially funded research.

Your teaching team

You will be taught by Cranfield’s leading academic experts including:

The course also includes visiting lecturers from industry who will relate the theory to current best practice. In recent years, our students have received lectures from industry speakers including: 

Dr Amir Chahardehi - Senior Fracture Mechanics and Fatigue Engineer at Atkins

Chris Hill - Chris has 17 years of experience at the Solutia UK Ltd (formerly Monsanto) site in Newport, South Wales where he has been employed first as a Project Engineer, but more recently as a Control Systems Engineer. 

Stephen Carver - Lecturer in project management in the Project Management Group, School of Management, and Director of the Management for Technology programme and the MBA Communications Course. 

Professor John Sharp, Visiting Professor to the Offshore Technology Centre, lecturing on UK Offshore regulations and the application of risk base regulations to offshore hazards. He has more than 20 years experience in the offshore industry including a period as Head of Research in the Offshore Safety Division of HSE.


Accreditation

This MSc degree is accredited by the Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the Advanced Mechanical Engineering masters is generally delivered from October until March and is comprised of eight compulsory taught modules. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The group project undertaken between October and April enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. You will put in to practice analytical and numerical skills developed in the compulsory modules.

The aim of the group project is to provide you with direct experience of applying knowledge to an industrially relevant problem that requires a team-based multidisciplinary solution. You will develop a fundamental range of skills required to work in a team including team member roles and responsibilities, project management, delivering technical presentations and exploiting the variety of expertise of each individual member. Each group will be given an industrially relevant assignment to perform. Industry involvement is an integral component for the group project, to give you first-hand experience at working within real life challenging situations. 

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups submit a written report and deliver a presentation to the industry partner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Recent group projects include:

Individual project

The aim of the individual research project is to provide you with direct experience in undertaking a research/development project in a relevant industrial or research area. You will make a formal presentation of your findings to a panel of academics and industry experts and submit a research thesis.

The individual research project component takes place from March to August.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work and supported by academic supervision.

Recent individual research projects include:

  • Comparison of a panel method and Reynolds averaged Navier-Stokes (RANS) method to estimate the aerodynamic coefficients of a profile flying in ground effect
  • The stress shielding effect of cracks in loaded components
  • Review and modelling of heave and roll motion passive damping systems for offshore floating support structures for wind turbines.

Assessment

Taught modules 40% Group Project 20% Individual Research Project 40%

University Disclaimer

Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory modules and (where applicable) some elective modules affiliated with this programme which ran in the academic year 2017–2018. There is no guarantee that these modules will run for 2018 entry. All modules are subject to change depending on your year of entry.

Compulsory modules
All the modules in the following list need to be taken as part of this course

Fluid Mechanics and Loading

Module Leader
Aim

    To provide a theoretical and applied understanding of fluid mechanics and fluid loading on structures.

Syllabus

    Principles of fluid dynamics:

  • Properties of fluids: Control volumes & fluid elements, Continuity, Momentum & Energy equations, stream function & velocity potential, Bernoulli’s equation.
  • Flow structures: Boundary layer theory, laminar & turbulent flow, steady & unsteady flow, flow breakdown & separations, vortex formation & stability
  • Lifting flows: Circulation theory, Prandtl’s lifting-line theory, sources of drag,  aerofoil characteristics
  • Fluid loading on horizontal and vertical axis turbines
  • Dynamics of floating bodies: from simple hydrostatics to complex dynamic response in waves.

  • Hydrostatics of Floating Bodies; Buoyancy Forces and Stability, Initial stability, The wall sided formula and large angle stability, Stability losses, The Pressure Integration Technique
  • Fluid loading on offshore structures and Ocean Waves Theory: The Added Mass Concept, Froude Krylov Force, Linear wave theory, Wave loading (Diffraction Theory & Morison Equation),
  • Dynamics response of floating structures in waves: dynamic response analysis, application to floating bodies (buoys, semisub, TLP), effect of moorings.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Explain how the wind, waves and tides are formed, factors that influence their distribution & predictability;
  • Review the fundamental equations for fluid behaviour, characterisation of flow structures and forces and moments acting on lifting bodies;
  • Evaluate and select the most appropriate model to assess and undertake the simulation of a floating structure static and dynamic stability.

Advanced Control Systems

Module Leader
  • Dr Yi Cao
Aim

    To introduce methodologies for the design of control systems for industrial applications.

Syllabus
    • System dynamics: Modelling of typical physical systems. Operating point. Linearization. Differential equation representation. State space representation of systems. Laplace transforms. Transfer functions. Block diagrams. SISO and MIMO systems. Time and frequency domain responses of systems.
    • Feedback control: Positive and negative feedback. Stability. Methods for stability analysis. Closed loop performance specification. PID controllers. Ziegler-Nichols. Self-tuning methods.
    • Enhanced controllers: Cascade control. Feedforward control. Control of non-linear systems. Control of systems with delay.
    • Digital controllers: Effects of sampling. Implementation of PID controller. Stability and tuning.
    • Advanced control topics: Hierarchical control. Kalman filter. System Identification. Model predictive control. Statistical process control. The use of expert systems and neural networks in industrial control.
    • Design packages for process control systems: Examples including Simulink and MATLAB.
    • Case studies: Examples will be chosen from a range of industrial systems including mechanical, chemical and fluid systems
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Evaluate and select appropriate modelling techniques for dynamic systems
  • Formulate control methodologies in feedback, feedforward and cascade loops
  • Recognise and critically appraise the key design tools and procedures for continuous and discrete controllers of dynamic systems

Risk and Reliability Engineering

Module Leader
  • Dr Athanasios Kolios
Aim

    To introduce the principles of risk management and reliability engineering and solve relevant engineering problems through widely applied methods and tools.

Syllabus
    • Introduction and Fundamentals of Risk and Reliability Engineering
    • Risk Management Process
    • Statistics, Probabilities and Mathematics for Risk Analysis
    • Failure mode, effects, and criticality analysis (FMEA/FMECA)
    • Hazard and operability study (HAZOP) Analysis
    • Practical Session #1: Basic Statistics, FMEA/HAZOP
    • Qualitative Reliability Analysis (FTA/ETA)
    • Systems modelling using Reliability Block Diagrams
    • System Reliability through software
    • Practical Session #2: System modelling and Reliability
    • Quantitative Reliability Analysis, Introduction to MCS
    • Risk Control and Decision Support Systems, Failure Consequences
    • Introduction to Stochastic Modelling Using @Risk
    • Insurance and Certification of Engineering Applications
    • Practical Session #3: Stochastic Modelling using @Risk
    • Asset Integrity Management
    • Risk-Based Inspection and Reliability-Centred Maintenance
    • Reliability, Availability, Maintainability and Safety (RAMS) Analysis
    • Introduction to inspection and Structural Health Monitoring (SHM)
    • Case study of risk/reliability and criticality assessment
    • Full day workshop: “Wind turbine electromechanical assembly / Subsea Tie-back Manifold Reliability"
    • Revision Session.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Demonstrate a systematic knowledge of the fundamentals of risk management and reliability engineering and a critical awareness of their application on relevant engineering problems;
  • Evaluate and select appropriate techniques for risk analysis (qualitative and quantitative), failure consequences assessment, and methods for control/mitigation through decision support systems and other relevant methods/tools;
  • Assess and analyse appropriate approaches to the collection and modelling of data in the application of Quantitative Risk Assessment (QRA) methods;
  • Develop a critical and analytical approach to selection and application of relevant standards and asset integrity management concepts.

Engineering Stress Analysis: Theory and Simulations

Module Leader
  • Dr Ali Mehmanparast
Aim

    This module brings together theoretical and computational stress analysis through Finite Element simulations, allowing students to appreciate how the two disciplines interact in practice and what their strengths and limitations are. The examination of Finite Element Analysis (FEA) for various practical applications (e.g. engineering components, composite structures, rotating disks, cracked geometries) in conjunction with relevant case studies will allow students to combine theoretical understanding with practical experience in order to develop their skills to model and analyse complex engineering problems.

Syllabus
    • Stress Analysis: Introduction to stress analysis of components and structures, Ductile and brittle materials, Tensile data analysis, Material properties, Isotropic/kinematic hardening, Dynamic strain aging, Complex stress and strain, Stress and strain transformation, Principal stresses, Maximum shear stress, Mohr’s circle, Constitutive stress-strain equations, Fracture and yield criteria, Constraint and triaxiality effects, Plane stress and plane strain conditions, Thin walled cylinder theory, Thick walled cylinder theory (Lame Equations), Compound cylinders, Plastic deformation of cylinders, Introduction to computational stress analysis.
    • Finite Element Analysis: Introduction to FEA, Types of elements, Integration points, Meshing, Mesh convergence, Visualisation, Results interpretation, Beam structures under static and dynamic loading, stress concentration in steel and composite plates, tubular assemblies, 2D and 3D modelling of solid structures, axisymmetry and symmetry boundary conditions, CS1: Stress and strain variation in a pressure vessel subjected to different loading conditions, CS2: Prediction and validation of the stress and strain fields ahead of the crack tip. (case studies are indicative).
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Develop a strong foundation on stress analysis and demonstrate the ability to analyse a range of structural problems.
  • Understand the fundamentals of Finite Element Analysis, be able to evaluate methodologies applied to the analysis of structural members (beams, plates, shells, struts), and critically evaluate the applicability and limitations of the methods and the ability to make use of original thought and judgement when approaching structural analysis.
  • Demonstrate an in-depth awareness of current practice through case studies of engineering problems.
  • Develop skills in using the most widely applied commercial finite element software package (ABAQUS) and some of its advanced functionalities.
  • Evaluate the importance of mesh sensitivity in finite element simulations.

Computational Fluid Dynamics for Renewable Energy

Module Leader
  • Dr Patrick Verdin
Aim

    To introduce the Computational Fluid Dynamics (CFD) techniques and tools for modelling, simulating and analysing practical engineering problems with hands on experience using commercial software packages used in industry.

Syllabus
    • Introduction to CFD & thermo-fluids: Introduction to the physics of thermo-fluids. Governing equations (continuity, momentum, energy and species conservation) and state of the art Computational Fluid Dynamics including modelling, grid generation, simulation, and high performance computing.  Case study of an Industrial problem and the physical process that CFD can be used to analyse.
    • Computational Engineering Exercise: specification for a CFD simulation. Requirements for accurate analysis and validation for multi scale problems. Introduction to Turbulence & practical applications of Turbulence Models: Introduction to Turbulence and turbulent flows. Traditional turbulence modelling. 
    • Advanced Turbulence ModellingIntroduction to Reynolds-averaged Navier Stokes (RANS) simulations and large-eddy simulation (LES).
    • Practical sessions: Offshore renewable energy problems (flow around wind and tidal turbines) will be solved employing the widely-used industrial flow solver software FLUENT.  These practical sessions will cover the entire CFD process including grid generation, flow solver, analysis, validation and visualisation.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Assemble and evaluate the different components of the CFD process.
  • Explain the governing equations for fluid flows and how to solve them computationally.
  • Compare and contrast various methods for simulating turbulent flows applicable to civil and mechanical engineering, especially offshore renewable energy applications such as wind turbines and tidal turbines.
  • Set up simulations and evaluate a practical problem using a commercial CFD package.
  • Design CFD modelling studies of renewable energy devices.

Power Generation Systems

Module Leader
Aim

    Understanding of the principles of operation, configuration, characteristics and key implementation issues of various types of power plant.

Syllabus
    • Overview: World electricity demand and generation. Fuels. Environmental impacts.
    • Steam power plants: Thermodynamic principles. Fuels. Steam power generation cycles.
    • Gas turbine and combined-cycle power plants: Gas turbine engines and performance. Gas turbine cycles. Combined-cycle power plants.
    • Diesel- and gas-engine power plants: Diesel engines. Fuels. Emission control. Heat recovery systems.
    • Nuclear power generation: Basic nuclear physical processes (fission and fusion). Nuclear fuels. Types of reactors. Safety considerations in the nuclear industry. Developments in nuclear fusion. Decommissioning problems of nuclear sites. Nuclear‑waste disposal systems.
    • Fuel cells: Definition and principles of operation. Losses and efficiency. Possible fuels. Fuel-cell technologies and applications (alkaline fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, and regenerative fuel cells).
    • CHP systems: CHP schemes (micro-scale CHP systems, small‑scale CHP systems, large‑scale CHP systems including district heating schemes). Application of CHP systems for the provision of heating, cooling and electric power. Selection criteria of CHP prime-movers. Integration of CHP systems into site services. Feasibility analysis of CHP schemes using spreadsheets/software tools. Case study (site appraisal for CHP scheme and evaluation of economic and environmental viability).
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Critically evaluate the fundamentals and laws governing energy conversion
  • Debate  issues related to the performance of conventional power-generation plants
  • Propose appropriate  technologies  for improving energy-utilisation efficiency of power-generation plants
  • Assess the need of a particular industrial/commercial site for a CHP system, identify the appropriate systems and undertake design, sizing and economic analyses
  • Review critically technologies employed for fuel-cell systems and advances in their applications

Structural Integrity

Module Leader
  • Dr Ali Mehmanparast
Aim

    To provide an understanding of pertinent issues concerning the use of engineering materials and practical tools for solving structural integrity and structural fitness-for-service problems.

Syllabus
    • Introduction & Structural Design Philosophies
    • Fatigue Crack Initiation
    • Fracture Mechanics (1) – Derivation of G and K
    • Fracture Mechanics (2) – LEFM and EPFM
    • Fracture Mechanics (3) – Evaluation of Fracture Mechanics Parameters; K and J
    • Fracture Toughness Testing and Analysis; KIC and JIC
    • Creep Deformation and Crack Growth
    • Non Destructive Testing Methods
    • Inspection Reliability
    • Defect Assessment, Fatigue and Fracture Mechanics of Welded Components
    • Fracture of Composites
    • Corrosion Engineering
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Assess fitness-for-service issues and propose appropriate structural integrity solutions.
  • Judge the current component life assessment procedures and distinguish their limitations in aspects of structural integrity.
  • Develop a critical and analytical approach towards the engineering aspects of structural integrity.
  • Be able to confidently assess the applicability of the tools of structural integrity to new problems and apply them appropriately.

Management for Technology

Module Leader
  • Stephen Carver
Aim

    The importance of technology leadership in driving the technical aspects of an organisations products, innovation, programmes, operations and strategy is paramount, especially in today’s turbulent commercial environment with its unprecedented pace of technological development.  Demand for ever more complex products and services has become the norm.  The challenge for today’s manager is to deal with uncertainty, to allow technological innovation and change to flourish but also to remain within planned parameters of performance.  Many organisations engaged with technological innovation struggle to find engineers with the right skills.  Specifically, engineers have extensive subject/discipline knowledge but do not understand management processes in organisational context.  In addition, STEM graduates often lack interpersonal skills.


Syllabus
    • Engineers and Technologists in organisations: The role of organisations and the challenges facing engineers and technologies.
    • People management: Understanding you. Understanding other people. Working in teams. Dealing with conflicts.
    • The Business Environment: Understanding the business environment; identifying key trends and their implications for the organisation.
    • Strategy and Marketing: Developing effective strategies; Focusing on the customer; building competitive advantage; The role of strategic assets.
    • Finance: Profit and loss accounts. Balance sheets. Cash flow forecasting.Project appraisal.
    • New product development: Commercialising technology. Market drivers. Time to market. Focusing technology. Concerns.
    • Business game: Working in teams (companies), students will set up and run a technology company and make decisions on investment, R&D funding, operations, marketing and sales strategy.
    • Negotiation: Preparation for Negotiations. Negotiation process. Win-Win solutions.
    • Presentation skills: Understanding your audience. Focusing your message. Successful presentations. Getting your message across.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Recognise the importance of teamwork in the performance and success of organisations with particular reference to commercialising technological innovation.
  • Operate as an effective team member, recognising the contribution of individuals within the team, and capable of developing team working skills in themselves and others to improve overall performance of a team.
  • Compare and evaluate the impact of the key functional areas (strategy, marketing and finance) on the commercial performance of an organisation, relevant to the manufacture of a product or provision of a technical service.
  • Design and deliver an effective presentation that justifies and supports any decisions or recommendations made.
  • Argue and defend their judgements through constructive communication and negotiating skills.

Fees and funding

European Union students applying for university places in the 2018 to 2019 academic year will still have access to student funding support. Please see the UK Government’s announcement (21 April 2017).

Cranfield University welcomes applications from students from all over the world for our postgraduate programmes. The Home/EU student fees listed continue to apply to EU students.

MSc Full-time £8,500
MSc Part-time £1,635 *
PgDip Full-time £6,500
PgDip Part-time £1,635 *
PgCert Full-time £3,250
PgCert Part-time £1,635 *
  • * The annual registration fee is quoted above and will be invoiced annually. An additional fee of £1,340 per module is also payable on receipt of invoice. 
  • ** Fees can be paid in full up front, or in equal annual instalments, up to a maximum of two payments per year; first payment on or before registration and the second payment six months after the course start date. Students who complete their course before the initial end date will be invoiced the outstanding fee balance and must pay in full prior to graduation.

Fee notes:

  • The fees outlined apply to all students whose initial date of registration falls on or between 1 August 2018 and 31 July 2019.
  • All students pay the tuition fee set by the University for the full duration of their registration period agreed at their initial registration.
  • A deposit may be payable, depending on your course.
  • Additional fees for extensions to the agreed registration period may be charged.
  • Fee eligibility at the Home/EU rate is determined with reference to UK Government regulations. As a guiding principle, EU nationals (including UK) who are ordinarily resident in the EU pay Home/EU tuition fees, all other students (including those from the Channel Islands and Isle of Man) pay Overseas fees.

For further information regarding tuition fees, please refer to our fee notes.


MSc Full-time £19,000
MSc Part-time £19,000 **
PgDip Full-time £15,200
PgDip Part-time £15,200 **
PgCert Full-time £7,600
PgCert Part-time £11,310 **
  • * The annual registration fee is quoted above and will be invoiced annually. An additional fee of £1,340 per module is also payable on receipt of invoice. 
  • ** Fees can be paid in full up front, or in equal annual instalments, up to a maximum of two payments per year; first payment on or before registration and the second payment six months after the course start date. Students who complete their course before the initial end date will be invoiced the outstanding fee balance and must pay in full prior to graduation.

Fee notes:

  • The fees outlined apply to all students whose initial date of registration falls on or between 1 August 2018 and 31 July 2019.
  • All students pay the tuition fee set by the University for the full duration of their registration period agreed at their initial registration.
  • A deposit may be payable, depending on your course.
  • Additional fees for extensions to the agreed registration period may be charged.
  • Fee eligibility at the Home/EU rate is determined with reference to UK Government regulations. As a guiding principle, EU nationals (including UK) who are ordinarily resident in the EU pay Home/EU tuition fees, all other students (including those from the Channel Islands and Isle of Man) pay Overseas fees.

For further information regarding tuition fees, please refer to our fee notes.


Funding Opportunities

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

GREAT China Scholarship
The GREAT Cranfield University Scholarship China is jointly funded by Cranfield University and the British Council. Two scholarships of £11,000 each for Chinese students are available.

The Cranfield Scholarship

We have a limited number of scholarships available for candidates from around the world applying for the 2017 intake. Scholarships are awarded to applicants who show both aptitude and ability for the subject they are applying. Find out more about the Cranfield Scholarship

Postgraduate Loan from Student Finance England

A Postgraduate Loan is now available for UK and EU applicants to help you pay for your Master’s course. You can apply for a loan at GOV.UK

Santander MSc Scholarship

The Santander Scholarship at Cranfield University is worth £5,000 towards tuition fees for full-time master's courses. Check the scholarship page to find out if you are from an eligible Santander Universities programme country.

Commonwealth Scholarships for Developing Countries

Students from developing countries who would not otherwise be able to study in the UK can apply for a Commonwealth Scholarship which includes tuition fees, travel and monthly stipend for Master’s study.

Future Finance Student Loans

Future Finance offer student loans of up to £40,000 that can cover living costs and tuition fees for all student at Cranfield University.

Chevening Scholarships

Chevening Scholarships are awarded to outstanding emerging leaders to pursue a one-year master’s at Cranfield university. The scholarship includes tuition fees, travel and monthly stipend for Master’s study.

Commonwealth Shared Scholarship

Students from developing countries who would not otherwise be able to study in the UK can apply for a Commonwealth Shared Scholarship which includes tuition fees, travel and monthly stipend for Master’s study, jointly supported by Cranfield University.

Cranfield Postgraduate Loan Scheme (CPLS)

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Conacyt (Consejo Nacional de Ciencia y Tecnologia)

Cranfield offers competitive scholarships for Mexican students in conjunction with Conacyt (Consejo Nacional de Ciencia y Tecnologia) in science, technology and engineering.

BPP-Tech Scholarships

The following industry scholarships, worth up to £1,500, are available to the candidates applying to the MSc in Advanced Mechanical Engineering:

  • One “BPP-Tech Excellence in Energy Studies” partial tuition fees scholarship, sponsored by BPP-Tech (www.bpp-tech.com)
  • One “BPP-Cables Sustainable Futures” partial tuition fees scholarship, sponsored by BPP-Tech (www.bpp-tech.com)
Institution of Mechanical Engineers Postgraduate Masters Scholarship

IMechE is offering a number of postgraduate research Scholarships worth up to £6,500 to graduates with a 2:1 honours IMechE accredited BEng(Hons) degree to allow them to undertake an IMechE accredited Masters degree.

IGEM Postgraduate Masters Scholarship

The Institution of Gas Engineers and Managers (IGEM) is offering postgraduate Masters Scholarships worth £6,500 to those studying an Engineering Council accredited degree.

Royal Aeronautical Society

The Royal Aeronautical Society offer Centennial Scholarships and British Aviation Group Scholarships.

Entry requirements

A first or second class UK Honours degree (or equivalent) in mathematics, physics or an engineering discipline. Other recognised professional qualifications or several years relevant industrial experience may be accepted as equivalent; subject to approval by the Course Director.

Applicants who do not fulfill the standard entry requirements can apply for the Pre-Masters programme, successful completion of which will qualify them for entry to this course for a second year of study.

English Language

If you are an international student you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. Our minimum requirements are as follows:

In addition to these minimum scores you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Students requiring a Tier 4 (General) visa must ensure they can meet the English language requirements set out by UK Visas and Immigration (UKVI) and we recommend booking a IELTS for UKVI test.

Applicants who do not already meet the English language entry requirement for their chosen Cranfield course can apply to attend one of our Presessional English for Academic Purposes (EAP) courses. We offer Winter/Spring and Summer programmes each year to offer holders.

Applying

Online application form. UK students are normally expected to attend an interview and financial support is best discussed at this time. Overseas and EU students may be interviewed by telephone.


Apply Now