This course meets the requirements of the Level 7 Through-life Engineering Services (TES) Specialist Standard. Application deadline 12 August.

Optimise your organisation's value-in-use and cost-in-use for long-life engineering assets by developing the skills, knowledge and behaviours that will shape the engineering leaders of tomorrow.

Our Level 7 Through-life Engineering Services Specialist Master’s Degree Apprenticeship provides delegates with the skills, knowledge and behaviours to maximise revenue through the provision of services that keep products operating effectively, rather than investing in the design, manufacture and delivery of original equipment (hardware). This allows organisations to extend the life of their high-value assets, reducing costs whilst also working towards achieving sustainability and ESG (environmental, social, and governance) goals.

The programme has been designed in collaboration with industry partners with a focus on addressing and finding solutions to real and current industrial challenges. Delegates will gain a wider perspective on what a through-life engineering solution could look like and what the system involves.


  • Start dateOctober
  • Duration24 months part-time
  • DeliveryTaught modules 40%, Group project (as dissertation) 20%, End Point Assessment 40%.
  • QualificationMSc
  • CampusDependent on delivery mode

Programme details

The programme has been mapped against the Level 7 Through-life Engineering Specialist Apprenticeship Standard and has been developed for organisations who require a full offering that delivers against all aspects of the Standard.

Watch the video to find out more about studying our Through-life Engineering Services Specialist Mastership®.

Why choose Cranfield University as your apprenticeship provider

One of the most powerful ways you can generate value from your Apprenticeship Levy is to upskill your existing workforce. At Cranfield, we’re passionate about providing education tailored for industry. As one of the first universities in the UK to offer degree apprenticeships at master’s level, we understand what is needed to develop industry-led apprenticeship standards and have the expertise to deliver that training. Cranfield's apprenticeship will provide a widening portfolio of Master’s level apprenticeship training required by industry.

Qualifications underpinning the standard

Our Through-life Engineering Services Specialist Apprenticeship is underpinned by Through-life System Sustainment MSc, a mature executive course that has been running for over 10 years and its accredited by the Institution of Mechanical Engineers (IMechE), Institution of Engineering and Technology (IET) and Royal Aeronautical Society (RAeS) on behalf of the Engineering Council . Many of our graduates hold senior positions in industry.

Who is it for?

This Level 7 Apprenticeship has been developed for organisations that require their workforce to engage in matters related to through-life management, support, asset management, servitisation and/or maintenance. Organisations that are through-life engineering services dependent will benefit from this programme, through the upskilling of employees in a range of roles such as engineers, business administrators, logistics, finance and commercial practitioners.


Learners will develop their specialist skills, addressing the current gap in highly-trained individuals able to support complex equipment and critical systems. The capabilities gained during the course are expected to contribute to the organisation's achievement of competitive advantage and sustainability objectives.

Furthermore, early career professionals will benefit from a postgraduate qualification and personal development opportunity with the UK’s leading postgraduate university specialising in technology and management. The applied nature of the programme enables personalised, specific and organisationally aligned development.

Delegates will be able to:

  • Analyse and improve business processes.
  • Identify opportunities for innovation, including servitisation.
  • Manage complex infrastructure projects.
  • Develop new products and services.
  • Refine operations and manage obsolescence.
  • Deliver improved results.

Course details

Course delivery

Taught modules 40%, Group project (as dissertation) 20%, End Point Assessment 40%.

Group project

The group project gives a team of students the opportunity to take on responsibility for a consultancy type project working for an industrial sponsor. The group project is determined in collaboration with the sponsor organisation and will aim to solve real-world problems. Note: A dissertation can replace the group project.

Example titles:

  • Analysis of Through-Life Engineering Services – Current Practice and Benchmarking
  • Life cycle cost model of bearings as a generic commodity
  • Feature deterioration mechanism knowledge base
  • Using diagnostics and prognostics technology to reduce total through-life costs in complex system.

The title and abstract of a recent group project:
Title: Conceptualisation of Digital Twin in the Service Environment

The project details an investigative research project on the subject of the Digital Twin. The project reviews a wide range of literature to identify the state of the art and also conducts a survey to provide detailed insight. The concept of a Digital Twin is defined and a potential Digital Twin is mapped using systems engineering techniques. This definition and system map is then used to assess the potential benefits of the Digital Twin to an in-service product. The paper describes the development of a use case on an HP Turbine blade to demonstrate how the Digital Twin can improve decision making. The paper concludes with a Roadmap which defines the capabilities, requirements and benefits which will be necessary to develop a full scale Digital Twin.


Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.

Course modules

Compulsory modules
All the modules in the following list need to be taken as part of this course.

Managing Assets and Value

Module Leader
  • Professor Andrew Starr
    Outline the Through-life Engineering Services (TES) framework and develop a basic understanding of the key value drivers and performance criteria to be considered in delivering through-life value from complex engineering systems. This will be achieved by reviewing industry best practice and emerging research in the field of system maintenance and through-life support, and applying the learning from case studies. The module will address business drivers, business models, service frameworks and future trends to develop knowledge and critical appraisal of operational methods, engineering challenges and tools to sustain value from physical assets.
    Through-life value delivery and systems thinking, and their associated risks and uncertainties.
    Product-Service Systems business models, with examples of from different sectors.
    Value in use; stakeholder analysis; service network design.  
    Economic drivers for the system sustainment; investment appraisal; cost vs performance trade off studies – methodology and examples. 
    Engineering challenges in asset management with real life examples, and future trends.

Intended learning outcomes On successful completion of this module a student should be able to:
1. Appraise the key through-life drivers for a complex engineering system and the risks and uncertainties involved.
2. Perform critical analysis of alternative TES business models.
3. Estimate value in the context of service networks.
4. Assess cost and performance trade-off options in an engineering system.
5. Analyse engineering challenges and future trends.

System Effectiveness

Module Leader
  • Dr Maryam Farsi

    To examine the fundamental factors (e.g. reliability) that influence the availability of complex engineering equipment, the implications (e.g. cost) of it’s through life support and its ultimate effectiveness (e.g. trade-off) throughout its lifecycle with regards to the value streams (i.e. Avoid, Contain, Recover, Convert).

    The concept and definitions for system effectiveness.
    The definitions of Availability, Reliability and Maintainability (AR&M) and logistics to deliver systems effectiveness in relation to the stated requirements.
    Definitions and measurement of logistics for supportability strategies and contracting.
    Supportability Concepts and Logistics, their elements and interaction with AR&M.
    Quantitative Requirements, Mean Time Between Failure (MTBF) logistic delay, Mean Time to Repair (MTTR) and impact on service provided.
    Understand failure rate, hazard rate, failure distributions and failure avoidance including failure analysis in design and use of R&M predictions. 
    Integrated Logistic Support (ILS) and impact on system effectiveness and system sustainment through life including the design of the support solution.
    Understand the philosophy, scope and capabilities of ILS and Logistics Support Analysis (LSA) and associated systems thinking. 
    AR&M and supportability tools (e.g. FMECA and FTA techniques) and Reliability Centred Maintenance (RCM). 
    Human Factors Integration (HFI) and impact on system effectiveness and system sustainment through life.
    Testing and Evaluation and assurance of system effectiveness and sustainment for system operation and support.
    Data collection and management/interpretation of data.
Intended learning outcomes

On successful completion of this module a student should be able to:

  1. Appraise supportability concepts & logistics and how they contribute to system effectiveness and sustainment.
  2. Analyse the measures of AR&M, how they are manipulated and applied and how their delivery can be assured.
  3. Defend the AR&M and logistic techniques, including testing and trials, used throughout the lifecycle.
  4. Evaluate the management issues for AR&M and Supportability in providing operational availability at minimum Through Life Cost (including programme management, risk management and capability integration).
  5. Critically evaluate the strategies to plan system effectiveness through-life.

Leadership and Change Management

Module Leader
  • Professor Colin Pilbeam
    To provide support solutions specialists with an understanding of different leadership models and frameworks and their application to change management within the context of through-life engineering services.

    Review leadership roles and responsibilities in through-life engineering.
    Values, attitudes and behaviours necessary for effective through-life engineering.  
    Characteristics, scope, purpose and roles and responsibilities.   
    The service support skills of negotiation, consultancy, facilitation, coaching, communication, team working and leadership.
    The role of ‘self’ in managing and leading change.  
    Resistance to change and sustainability of change – the role of cultures. 
    The diverse nature of organisations and how people, management and strategy are influenced by internal and external factors.  
    Change management including change in failure in service support and sustainment environments.  
    Pre-requisites for successful change.  
    Performance management approaches to drive successful implementation and change.

Intended learning outcomes

On successful completion of this module a student should be able to:
1. Examine leadership attributes and behaviours in the delivery of through life capability and system sustainment. 
2. Evaluate the skills required for the leadership and management of relationships and partnerships.  
3. Examine the leadership and skills required for change management in through-life engineering.  
4. Examine best practice in delivery of successful system sustainment and the leadership and skills that have delivered success.

Optimising Whole Life Cost and Performance Management


    To introduce Cost Engineering principles, procedures and practices that will contribute to the development of affordable products and services with the focus on optimised whole life cost and performance.

    Economic Through Life System development, understand why Cost Engineering (CE).
    CE principles, cost estimation and modelling techniques, CE process, whole life costing, Integrated Logistic Support (ILS) costing, cost of hardware development and manufacture, cost of through life support.
    Dynamic cost modelling, Knowledge management for Cost Engineering, affordability engineering, risk analysis and uncertainty management, systems thinking for cost.
    Holistic life cycle related CE case studies for improved business intelligence: Building awareness of software tools (e.g. TruePlanning, SEER-H).
Intended learning outcomes On successful completion of this module you should be able to:
1. Critically apply the key techniques for whole life costing and performance management.
2. Analyse cost estimates for robustness and identify performance measures for a complex engineering system. 
3. Appraise and estimate the cost of different through-life scenarios, by evaluation of maintenance and whole life costs, while achieving required asset performance.
4. Evaluate the risk and uncertainties involved in cost and performance estimating.
5. Critically evaluate the terminologies and key concepts used in cost accounting.

Operational Availability and Risk

Module Leader
  • Jeremy Smith

    Plan, source, transform, deliver and return are system activities that work towards the creation of values to business and customers. Operational availability of supported systems is such an anticipated output and even though business and customers cooperate in different levels and ways to deliver it, there are risks that can hinder its achievement. This m odule aims to study the relationship between the concept of operational availability and risk in such systems.

    Principles and concepts of risk and availability modelling
    Problem definition, FMEA and root cause analysis 
    Concepts of probability, uncertainty and reasoning
    Introduction to simulation  and its application in the analysis of support problems for the delivery of value and the evaluation of associated risks
    Scenarios development and analysis as a means to extend the knowledge base for informed decision making
    HRO principles and their applicability in the support operations business objectives

Intended learning outcomes On the successful completion of this module a student should be able to:
1. Critically evaluate the concept of Operational Availability within the context of the business’ and of the customers’ value creation processes using systems thinking
2. Assess the concept of risk, compare and contrast it with the concept of uncertainty and discuss the applicability of conventional risk assessment tools (FMEA, FTA, ETA) in complex systems that contribute to the delivery of Operational Availability
3. Evaluate the applicability and added value of the High Reliability Organisations (HROs) principles framework and of knowledge expanding methods like scenario development, peers view engagement, bayesian reasoning and simulation, on the preparation and containment of the risks on Operational Availability

Through-Life Business Models and Servitisation


    To enable students to analyse critically the challenges and key issues for the  development of alternative business models for Through Life Support.

    Contracted support options: commercial approaches and options from other sectors
    The evolution of global trends in maintenance, support and the circular economy in non-traditional TES sectors
    Systems and other thinking and practices  around requirements for through life support and sustainment.  
    Requirements capture, change management and economic evolution.
    Case studies to illustrate governance, cultures and behaviours, enablers and blockers, performance management, alternative contractual approaches and other possible lessons. 
    Measuring what matters: ensuring the right metrics for the delivery of effect and delivering an effective assurance process and the limitations of metrics.

Intended learning outcomes On successful completion of this module a diligent student should be able to:
1. Derive the key characteristics of a range of business models within which fleets of complex, capital-intensive, long service life systems are designed, manufactured, deployed and supported through the life cycle.
2. Determine the broad requirements (organizational, technological, managerial etc) of organizations to operate within these business models.
3. Derive the business and engineering processes, resources, and competences an organization requires to effect the transition from a traditional, transactional-type, product-focused business model, to one of servitisation.
4. Analyse the broad direction of academic research, and of the development of new approaches and processes, in the field of through life support and system sustainment.

Information Management

Module Leader
  • Dr Christos Emmanouilidis
    The aim of this module is to provide fundamental concepts and working knowledge on information management, including data life cycle management, data value chains, data quality management, as well as emerging topics in information management, such as internet of things, data analytics, and information visualisation.
    Business Requirements and Digital Transformation
    Data Value Chains
    The Data Asset Lifecycle Management Challenges, including Big Data, Quality, Modelling, Standards, and Governance
    Internet of Things
    From Data to Knowledge and Actions: Data Analytics and Artificial Intelligence
    Context Information Management
    Signal / Image Management and Cloud Services
    Augmented Information Management and Delivery
    Edge and Cloud Computing Architectures
    Industry Applications and Case Studies
    Data - Driven Product and Service Innovation

Intended learning outcomes On successful completion of this module a student should be able to:
1. Analyse in a systematic way data and information management concepts and practice.
2. Compose information management concepts and technologies to drive opportunities in a business where information management can add business value (Data and Business Value Chains) 
3. Analyse and evaluate the application of emerging topics in Information Management such as Data Analytics, Information Visualisation, Cloud Computing, and Internet of Things.
4. Synthesise information management concepts to compose value propositions for data-driven product and service innovation.

Diagnostics and Prognostics


    To provide working knowledge on the design, development, implementation, and evaluation of the alternative TES value drivers (avoid, contain, recover). The module will go in to detail on how Diagnostics, Prognostics and Health Management (PHM), Condition-Based Maintenance (CBM) technologies and maintenance management will add value for TES.

    Introduction to the Diagnostics, PHM/CBM Design with emphasis on holistic life cycle design; Requirements, Metrics, and Cost Benefit; business intelligence, and system design for support solution
    Systems thinking for FMECA and PHM/CBM modelling process; Fault Detection and Isolation Approaches; and wider reliability and maintainability management
    Advanced R&D in PHM Algorithms; PHM/CBM Reasoning Methods and Examples; Prognostic Algorithm Approaches and Examples in relation to the design of a support solution
    Electronic/Software Systems PHM; Electronic Systems Diagnostic/Prognostic Examples
    PHM Metrics and V&V Methods; Additional Case Studies, Lessons Learned, and Issues

Intended learning outcomes On successful completion of this module a student should be able to:
1. Assess the benefits of key concepts and techniques for maintenance planning, diagnostics and prognostics and health management.
2. Evaluate activities to enable the avoidance of deterioration by identifying current Diagnostic and Prognostic technologies, and other technologies.
3. Analyse how diagnostic and prognostic can assist with better intervention timing and content containing the deterioration.
4. Create consequent maintenance plan (e.g. functional recovery) for asset health.
5. Evaluate how to conduct maintenance management using PHM/CBM technologies.

How to apply

Prospective delegates

If you would like to find out more general information about the course and your eligibility to attend the programme, please arrange a one-to-one discussion with the course director before you make a formal application.

If you would like to attend this course, please ask your employer to submit an Expression of Interest form to confirm their willingness to sponsor you.

For employers

For employer related enquiries, fees and funding, and the expression of interest/application process, please contact our Apprenticeships Team:

To start an application, please complete our Expression of Interest form.

Please note that applications for apprenticeship routes must come via the Expression of Interest form. Apprenticeship applications received via the application button on the non-apprenticeship pages will not be processed.