Areas of expertise

  • Bioinformatics
  • Computing, Simulation & Modelling
  • Through-life Engineering Services

Background

Jun awarded Bachelor's degree in Detection and Guidance and Control Techniques at Beihang University (China, 2017).  He moved on to complete an MSc in Digital Signal Processing at the University of Manchester (England, 2018). He chose the MSc to further advance his knowledge in signal processing, communication, and machine learning. Now, Jun is pursuing a Ph.D. in Manufacturing at Cranfield University. This Ph.D. project aims to develop an EEG-based brain functional and effective connectivity (BiFEC) estimation and visualisation technique to identify new sensitive, non-invasive, and reproducible biomarkers for diagnosing and monitoring neurological diseases. 
  

Current activities

Review and Case study

  • To systematically review brain functional and effective connectivity methods in accordance with their properties, such as linear or nonlinear, parametric or non-parametric, time, frequency or time-frequency domain and directed or undirected.
  • To review various distinct approaches of brain connectivity visualisation
  • A case study related to Alzheimer’s disease, supported by Support Vector Machine (SVM) classification method, to evaluate several brain connectivity methods. 

Originality and Novelty of brain connectivity methods
  • To develop estimation methods of Functional and Effective connectivity
  • To extract and comprehensively analyse the information in Time, frequency and
 time-frequency domain
  • To develop Nonlinear and Dynamic methods 
Evaluation of the proposed methods
  • To implement the Functional and Effective connectivity methods in several cases, such as Alzheimer's disease, epilepsy and Parkinson’s disease
  • Quantification analysis supported by Machine learning, such as Support Vector Machine(SVM), Random Forest, K-Nearest Neighbour (KNN) and Naïve Bayes.
  • Multiple dimensions to evaluate the classification results, like accuracy, sensitivity, and Specificity, as well as the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC).
Increase of Interpretability
  • To devolve appropriate Visualisation methods
  • To achieve Real-time monitoring of brain connectivity
  • Supported by Augmented Reality
Validation of the imaging system
  • EEG data resources is provided by a local NHS hospital
  • Supported by Doctors’ knowledge and experience
  • To explore medical and neuroscience findings


Publications

Articles In Journals