NetZero full-fee industrial UK scholarship now available Apply early

Energy Systems and Thermal Processes MSc

Advance your Energy career

Rational and economic use of energy, with the least damage to the environment, is vital for the future of our planet. Established in 1972, The Energy Systems and Thermal Processes MSc remains the most prestigious degree in technical energy management in the UK. Accredited by the Institution of Mechanical Engineers, it will equip you with the state of the art technical knowledge and skills required to help achieve energy efficiency and reduce environmental pollution. Closely aligned with industry - with real world case studies and research projects at its core - this course will enable you to develop a successful and rewarding career as an environmentally aware energy professional.

Overview

  • Start dateFull-time: October. Part-time: October
  • DurationOne year full-time, two-three years part-time.
  • DeliveryTaught modules 40%, Group projects 20%, Individual project 40%
  • QualificationMSc, PgDip, PgCert
  • Study typeFull-time / Part-time
  • CampusCranfield campus

Who is it for?

This course is designed for engineering graduates or practicing engineers who wish to develop a successful career as an environmentally aware energy professional.

The course will equip you with knowledge that can be directly applied to help various sectors improve competitiveness in the face of dwindling resources, probable substantial increases in energy costs and the urgent requirement to comply with the increasingly restrictive pollution control standards.

Your career

There is a considerable demand for environmentally aware energy specialists with in-depth technical knowledge combined with practical and management skills. At Cranfield, our focus is on an industry-led education, which makes our graduates some of the most desirable in the world for recruitment by companies and organisations competing in the energy sector.

Graduates of the course have been successful in gaining employment in energy, environmental and engineering consultancies and design practices, research organisations and government departments or go on to further research studies.

Successful graduates of this course have gone onto work in a range of roles, including:

Business Development Manager, Research Associate, Project Manager, Senior Project Engineer, Solutions Development Engineer, Operational Planning Engineer, Customer Application Engineer; Battery Test Deliver Engineer, Process & Project Engineer, Junior Project Engineer, Product Manager, PhD Researcher, Engineering Graduate.

Within prestigious institutions including:

Alstom Power, British Gas, BELECTRIC UK,  Blue Circle Cement, Centrica, Coca Cola, Ceylon Electricity Board, Danfoss, DELPHI Automotive Systems, ENGIE Laborelec, Mexico, Electrolux, Denmark, Energy Saving Trust, Environmental Agency, Honeywell, Jaguar Land Rover, London Business School, Ministry of Energy (Botswana, Jordan, Tanzania, Uganda), Powergen, Petrofac, Scottish Power, Transport for London and Unilever.

Cranfield Careers Service

Cranfield’s Career Service is dedicated to helping you meet your career aspirations. You will have access to career coaching and advice, CV development, interview practice, access to hundreds of available jobs via our Symplicity platform and opportunities to meet recruiting employers at our careers fairs. We will also work with you to identify suitable opportunities and support you in the job application process for up to three years after graduation.


Why this course?

Rational and economic use of energy, with the least damage to the environment, is vital for the future of our planet. The MSc in Energy Systems and Thermal Processes has evolved over the past 40 years from ongoing discussions with industrial experts, employers, sponsors and previous students.

The ethos of the course is to provide you with the professional skills you will need to develop a successful career improving the management of energy, designing energy-efficient systems and processes, utilising of renewable energy sources and the reducing and controlling pollution cost effectively.

  • Access world-class pilot scale facilities that are unique to the UK higher education sector.
  • Study modules including Thermal Energy Systems, Heat Transfer, Thermal Systems Operation and Design and Applied Thermal Systems.
  • Develop your technology leadership capabilities with the world renowned Cranfield School of Management.
  • Participate in individual and group projects focused on your personal interests and career aspirations – with many supported by industry.
  • Learn from lecturers with extensive, current experience of working with industry on solving real world mechanical engineering challenges.
  • Benefit from our extensive industry links and alumni community, to develop your network and advance your career.
Chukwuemeka outside Kings Norton library

"Cranfield University is world renowned for its facilities and development of new technologies. I'm a Nigerian, and a scholar of Petroleum Technology Development Funds (PTDF). Back in my country we are trying to integrate new technologies into existing plants, to provide alternative solutions to the flaring of natural gas. Two months into my course I have already learned so much, and can see possibilities of how to achieve both my own goals around climate change, and make improvements back home in Nigeria.”


Chukwuemeka Nwanyanwu, current student, Energy Systems and Thermal Processes MSc

Informed by Industry

The Energy Systems and Thermal Processes MSc is closely aligned with industry to ensure that you are fully prepared for your career

  • Close engagement with the energy sector over the last 20 years has produced long standing strategic partnerships with a wide range of prominent organisations including Alstom Power, BP, Cummins Power Generation, Doosan Babcock, E.ON, npower, Rolls Royce, Shell, Siemens and Total.
  • Knowledge gained working with our industrial clients is continually fed back into the teaching programme to ensure that you benefit from the very latest knowledge and techniques affecting industry.
  • We have a world-class reputation for industrial-scale research facilities and pilot-scale demonstration programmes in the energy area.
  • Our strategic links with industry ensure everything taught on the course is relevant, timely and meet the needs of organisations competing within the energy sector, making our graduates some of the most desirable in the world.
  • The course is accredited by the Institution of Mechanical Engineers, ensuring professional recognition and relevance to employers, accredits the course.


Course details

The taught programme is delivered from October to February and is comprised of eight modules.

There are five one-week modules that are mostly delivered in the early part of the year and cover the essential information to complete the degree.  These are intensive weeks with lectures typically all day. During this period, there are some weeks without modules, and these are largely free of structured teaching to allow time for more independent learning and reflection, completion of assignments or exam preparation.  

There are three two-week modules that take place later in the academic year and involve more active problem-based learning and typically include practical or laboratory sessions, case studies or group work.  These are an opportunity for you to apply and integrate your knowledge.  These modules are all assessed by assignments that are completed during the two-week period.  The focus on group work and application within these modules provides a valuable transition into the Group Project.

 


Water course structure diagram

Course delivery

Taught modules 40%, Group projects 20%, Individual project 40%

Group project

The group project, undertaken between February and April, enables you to put the skills and knowledge developed during the taught modules into practice in an applied context, while gaining transferable skills in project management, teamwork and independent research. Projects are often supported by industry and potential future employers value this experience. The group project is normally multidisciplinary and shared across the Energy MSc programme, giving the added benefit of working with students with other backgrounds.

Each group is given an industrially relevant problem to solve. During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. At the end of the project, all groups submit a written report and deliver a poster presentation to industry partners. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Recent group projects include:


Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is common for our industrial partners to put forward real practical problems or areas of development as potential research topics. The individual research project component takes place between April and August.

For part-time students, it is common that their research project is undertaken in collaboration with their place of work. 

Research projects will involve designs, computer simulations, techno-economic, feasibility assessments, reviews, practical evaluations and experimental investigations.

Typical areas of research include:

  • Techno-economic feasibility assessment of clean energy systems
  • Modelling of energy-conversion systems and thermal processes
  • Renewable energy utilisation schemes
  • Control of environmental pollution
  • Combustion and heat transfer processes.
Recent individual research projects Include:

  • Feasibility study for a mini hydropower plant in Peru
  • Evaluation of flexible layouts of coal-fired power plant with calcium looping
  • Feasibility assessment of Installing photovoltaic systems in a house in Alicante, Spain
  • Biomass gasification plants for decentralised small scale rural electrification in Northern Ghana: Assessing the economic viability of its utilisation
  • Investigation of jet pump performance under multiphase flow conditions.

Modules

Keeping our courses up-to-date and current requires constant innovation and change. The modules we offer reflect the needs of business and industry and the research interests of our staff and, as a result, may change or be withdrawn due to research developments, legislation changes or for a variety of other reasons. Changes may also be designed to improve the student learning experience or to respond to feedback from students, external examiners, accreditation bodies and industrial advisory panels.

To give you a taster, we have listed the compulsory and elective (where applicable) modules which are currently affiliated with this course. All modules are indicative only, and may be subject to change for your year of entry.


Course modules

Compulsory modules
All the modules in the following list need to be taken as part of this course

Heat Transfer

Module Leader
  • Dr Ali Nabavi
Aim
    An in-depth understanding of the fundamentals of heat transfer and practical tools for solving heat-transfer problems and design of heat-transfer equipment.
Syllabus
    • Modes of heat transfer. Conduction: Thermal conductivity. The differential heat-conduction equation. One-dimensional, steady‑state conduction. Two-dimensional, steady‑state conduction. Transient heat conduction.
    • Convection: Forced and free convection. The convective heat‑transfer coefficient. Fluid flow and the boundary‑layer concept. Turbulence. Boundary‑layer equations. The conservation equations. Boundary-layer equations. Analytical and integral solutions of boundary-layer equations. Analogy between heat and momentum transfer. Dimensional analyses of convective heat transfer.
    • Empirical and practical relations for forced convection: Flows over flat plates. A cylinder and a sphere in cross flow. Tube bundles in cross flow. Forced convection in packed beds. Forced convection inside tubes and ducts.
    • Empirical relations for Natural convection: Vertical planes and cylinders. Horizontal cylinders. Horizontal plates. Inclined surfaces. Spheres. Enclosures. Channels between parallel plates. Combined natural and forced convection.
    • Thermal radiation: Physical mechanism. Intensity of radiation and emissive power. Irradiation. Blackbody radiation. Radiation properties of surfaces. Radiation exchange between surfaces. Radiant energy transfer through absorbing and emitting media.
    • Boiling heat transfer: Fundamentals of boiling heat transfer. Pool boiling. External forced-convection boiling. Internal forced-convection boiling. Pressure drop in forced-convection boiling systems.
    • Condensation heat transfer: Mechanisms of condensation. Film condensation. Dropwise condensation.
    • Case studies:  Application of numerical techniques for solving a one‑dimensional, transient conduction problem with radiative and convective boundary conditions. Steady‑state analysis of a combined conduction, convection and radiation Heat transfer problem.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Critically evaluate the principles governing the transfer of heat and apply a range of techniques, tools and skills to analyse and solve typical engineering problems
  • Formulate appropriate procedures/strategies for solving complex problems and making sound judgements in the absence of complete data
  • Critically evaluate and analyse energy flows in complicated systems and design heat-transfer equipment

Thermal Energy Systems

Module Leader
  • Dr Ali Nabavi
Aim
    This module provides an understanding of the fundamentals of operation, configuration and characteristics of thermal energy systems. Students will also learn how to apply these for design of energy-efficient furnaces and boilers and key implementation issues of various types of power plant.
Syllabus
    • Fuels and thermal conversion processes: primary solid and liquid fuels. Carbonisation of solid fuels. Thermodynamic equations. Dissociation and chemical equilibrium. Process efficiency, emission control and standards,
    • Furnaces and boilers: types of furnaces and classification. Heat transfer in furnaces, efficient furnace and boiler design. Boiler efficiency and part-load operation and its maintenance,
    • Overview: World electricity demand and generation. Fuels. Environmental impacts,
    • Steam power plants: Thermodynamic principles. Fuels. Steam power generation cycles,
    • Gas turbine and combined-cycle power plants: Gas turbine engines and performance. Gas turbine cycles. Combined-cycle power plants,
    • Diesel- and gas-engine power plants: Diesel engines. Fuels. Emission control. Heat recovery systems,
    • Nuclear power generation: Basic nuclear physical processes (fission and fusion). Nuclear fuels. Types of reactors. Safety considerations in the nuclear industry. Developments in nuclear fusion. Decommissioning problems of nuclear sites. Nuclear waste disposal systems,
    • Fuel cells: Definition and principles of operation. Losses and efficiency. Possible fuels. Fuel-cell technologies and applications (alkaline fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, and regenerative fuel cells),
    • CHP systems: CHP schemes (micro-scale CHP systems, small scale CHP systems, large scale CHP systems including district heating schemes). Application of CHP systems for the provision of heating, cooling and electric power. Selection criteria of CHP prime-movers. Integration of CHP systems into site services. Feasibility analysis of CHP schemes using spreadsheets/software tools. Case study (site appraisal for CHP scheme and evaluation of economic and environmental viability),
    • Advanced power plants: geothermal plants and its applications. Solar thermal enhanced designs and new materials. Innovative SCO2 cycles to operate at higher temperatures, bringing higher energy output.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Critically evaluate the fundamentals and laws governing energy conversion and appraise various fuels and their characteristics,
  • Assess the operation of furnaces and boilers based on a fundamental understanding of the governing laws, and debate issues influencing the design/selection of furnaces and boilers and future trends,
  • Debate issues related to the performance of conventional power-generation plants and identify appropriate routes for improving energy-utilisation efficiency,
  • Assess the need of a particular industrial/commercial site for a CHP system, identify the appropriate systems and undertake design, sizing and economic analyses,
  • Review critically technologies employed for advanced power generation systems (Geo-thermal, solar thermal, SCO2 cycle) and it’s applications.

Thermal Systems Operation and Design

Module Leader
  • Dr Ali Nabavi
Aim
    Design of optimum thermal and energy storage systems is one of the key prerequisites to enhance the performance and efficiency of conventional and future energy systems. This module aims to enable students to combine and apply the principles of heat transfer, thermodynamics and fluid mechanics in the design and optimisation of commercial thermal systems. In addition, the module introduces students to a wide range of challenges and opportunities in waste heat recovery and energy storage, and provides them with practical approaches and solutions to enhance the system efficiency.
Syllabus

    Heat exchanger Design and Operation

    1. Heat exchangers: Classification. Theoretical principles and design of recuperative systems (effectiveness, NTU and capacity ratio approach for parallel-, counter- and cross-flow configurations). Series cross‑flow arrangements. Regenerative heat exchangers (intermittent and continuous systems). Pressure‑loss assessment. Heat‑exchanger optimisation (optimal pressure drop and surface area to maximise economic returns.
    2. Process integration: Heat-exchanger network. Utility systems. Fundamentals of pinch analysis and Energy Analysis.

    Waste Heat Recovery and Thermal Storage

    1. Waste‑heat recovery: Sources of waste heat. Heat recovery for industrial applications. Energy density considerations. Economics of waste-heat recovery.
    2. Thermal storage: Principles and application to hot and cold systems. Storage duration and scale. Sensible and latent heat systems.Phase-change storage materials. Application to source and load matching.

    Refrigeration and Air Conditioning

    1. Application of refrigeration and air conditioning.
    2. Vapour-compression refrigeration systems: Simple systems. Multi-stage compressor systems. Multi-evaporator systems.
    3. Refrigerants:Halocarbon refrigerants. CFC alternatives. Refrigerant-selection criteria.
    4. Refrigeration compressors: Reciprocating compressors. Rotary screw compressors. Scroll compressors. Vane compressors. Centrifugal compressors.
    5. Absorption refrigeration: The absorption process. Properties of fluid-pair solutions. The basic absorption cycle. Double-effect systems.Advances in absorption-refrigeration technology.
    6. Psychrometry and principle Air-conditioning processes: Psychrometry. Heating, cooling, humidification and dehumidification processes.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Analyse and design heat exchangers, competently applying the principles of heat transfer, thermodynamics and fluid mechanics
  • Construct optimised heat exchanger networks by applying principles of process integration
  • Recognise and debate  the issues related to the efficient use of thermal energy and appraise  techniques and technologies employed
  • Design and analyse the performance of refrigeration and air conditioning systems.

Computational Fluid Dynamics for Industrial Processes

Module Leader
  • Dr Patrick Verdin
Aim
    To introduce the CFD techniques and tools for modelling, simulating and analysing practical engineering problems with hands on experience using commercial software packages used in industry.
Syllabus
    • Introduction to CFD & thermo-fluids: Introduction to the physics of thermo-fluids, governing equations (continuity, momentum, energy and species conservation) and state of the art Computational Fluid Dynamics including modelling, grid generation, simulation, and high performance computing.  Case study of industrial problems related to energy, process systems, offshore engineering, and the physical processes where CFD can be used.
    • Computational Engineering Exercise: specification for a CFD simulation. Requirements for accurate analysis and validation for multi scale problems. Introduction to Turbulence & practical applications of Turbulence Models: Introduction to Turbulence and turbulent flows. Traditional turbulence modelling. 
    • Advanced Turbulence ModellingIntroduction to Reynolds-averaged Navier Stokes (RANS) simulations and large-eddy simulation (LES).
    • Practical sessions: Fluid process problems are solved employing the widely-used industrial flow solver software FLUENT. Lectures are followed by practical sessions on single/multiphase flows, heat transfer, to set up and simulate a problem incrementally.  Practical sessions cover the entire CFD process including geometric modelling, grid generation, flow solver, analysis, validation and visualisation.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Assemble and evaluate the different components of the CFD process.
  • Explain the governing equations for fluid flows and how to solve them computationally.
  • Compare and contrast various methods for simulating turbulent flows applicable to mechanical and process engineering.
  • Set up simulations and evaluate a practical problem using a commercial CFD package.
  • Design CFD modelling studies for use in industrial design of complex systems.

Applied Thermal Energy Systems

Module Leader
  • Dr Joy Sumner
Aim

    This module provides an in-depth applied knowledge for different thermal energy systems to help spur the next industrial revolution for improving efficiency, reducing water consumption and efficient way of utilising waste heat streams. Students will also learn how to develop these integrated schemes and play an important role in thermodynamic modelling, data collection, analysis, and prediction of the performance and control of these advanced/applied thermal systems.


Syllabus
    • Thermodynamic simulation tool selection: ASPEN Plus, Thermoflex, Ebsilon, MATLAB, EES and/or combination of these software packages,
    • Modelling of heat source: Coal-fired boilers, solar field, biomass incinerators and nuclear reactors, and its typical steam conditions, thermal energy storage etc.
    • Power block configuration for large Rankine cycle: Steam generators, Steam turbine, condenser, pumps, Deaerators, super heaters, pre heaters, heat exchangers, Control valves etc. Introducing the concept of Exergy and how it can be used to understand how processes can be made more efficient for large Rankine steam cycle,
    • Cooling technologies for heat rejection: Once through cooling, wet cooling towers, Dry cooling towers, Hybrid cooling systems, Versatile coolers, Cold Thermal Energy Storage (cTES) systems, PCM storage, Water consumption calculations,
    • Integration of components and systems: Integration of detail component model into global model (of heat source, power block and cooling systems), Design vs Off Design analysis,
    • Waste heat recovery systems: Absorption chiller simulations, de-humidification calculations, desalination model development (Multi-effect distillation, Membrane distillation),
    • Dynamic model: Transient simulation, Annual performance of the developed thermal energy system,
    • Economics of thermal energy systems: Economic models for thermal energy systems, CAPEX and OPEX, Levelized cost of energy (LCE) calculations.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Critically evaluate the detailed thermodynamics of different thermal energy processes,
  • Articulate the details of thermodynamic modelling of different energy sources, power blocks, cooling technologies and waste heat from thermal systems to drive desalination and absorption systems,
  • Assess the integration of these thermal sub system components into whole plant configuration for design and off-design scenarios,
  • Propose appropriate routes for improving energy-utilisation efficiency and its trade-offs,
  • Investigate the economic and environmental impacts of the proposed technologies.

Management for Technology

Aim
    The importance of technology leadership in driving the technical aspects of an organisations products, innovation, programmes, operations and strategy is paramount, especially in today’s turbulent commercial environment with its unprecedented pace of technological development. Demand for ever more complex products and services has become the norm.  The challenge for today’s manager is to deal with uncertainty, to allow technological innovation and change to flourish but also to remain within planned parameters of performance.  Many organisations engaged with technological innovation struggle to find engineers with the right skills.  Specifically, engineers have extensive subject/discipline knowledge but do not understand management processes in organisational context.  In addition, STEM graduates often lack interpersonal skills.
Syllabus
    • Engineers and Technologists in organisations: The role of organisations and the challenges facing engineers and technologies.
    • People management: Understanding you. Understanding other people. Working in teams. Dealing with conflicts.
    • The Business Environment: Understanding the business environment; identifying key trends and their implications for the organisation.
    • Strategy and Marketing: Developing effective strategies; Focusing on the customer; building competitive advantage; The role of strategic assets.
    • Finance: Profit and loss accounts. Balance sheets. Cash flow forecasting.Project appraisal.
    • New product development: Commercialising technology. Market drivers. Time to market. Focusing technology. Concerns.
    • Business game: Working in teams (companies), students will set up and run a technology company and make decisions on investment, R&D funding, operations, marketing and sales strategy.
    • Negotiation: Preparation for Negotiations. Negotiation process. Win-Win solutions.
    • Presentation skills: Understanding your audience. Focusing your message. Successful presentations. Getting your message across.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Recognise the importance of teamwork in the performance and success of organisations with particular reference to commercialising technological innovation.
  • Operate as an effective team member, recognising the contribution of individuals within the team, and capable of developing team working skills in themselves and others to improve the overall performance of a team.
  • Compare and evaluate the impact of the key functional areas (strategy, marketing and finance) on the commercial performance of an organisation, relevant to the manufacture of a product or provision of a technical service.
  • Design and deliver an effective presentation that justifies and supports any decisions or recommendations made
  • Argue and defend their judgements through constructive communication and negotiating skills.

Process Design and Simulation 

Module Leader
  • Dr Dawid Hanak
Aim
    Process design, simulation and modelling are industrially-relevant tools to assess the techno-economic feasibility of complex engineering processes. These enable assessing the project feasibility and optimising the process plant design before the actual process plant is build. These tools are widely applied in the industry to assess a number of process variants and to select the most efficient and cost-effective option. This module aims to introduce the students to the modern techniques and computer aided engineering tools for the design, simulation and optimisation of process systems. Via a large share of process simulation and optimisation case studies, the module will enable the students to gather the hands-on experience of using the commercial software.
Syllabus
    Process Design
    • Overview: Conceptual process design. Process flow-sheeting.
    • Process synthesis: Overview of a process system. Recycle structure of the flowsheet. Design of reaction and separation systems.
    • Process integration: Basic concepts of process integration for heat exchanger network design.
    • Process economic analysis: Equipment capital cost estimation. Process profitability analysis.
    Process Modelling, Simulation and Optimisation
    • Modelling and simulation: Basic concepts of process modelling. General concepts of simulation. Introduction to steady and dynamic process simulation. Introduction to commercial simulation software packages (i.e, Aspen HYSYS) for process flow-sheeting, design and analysis.
    • Process optimisation techniques: Basic principles of optimisation. Presentation of a number of industrial case studies. (e.g., heat exchanges network synthesis).
    Case Studies (PC Lab and Demonstration Sessions)
    • A number of process simulation and optimisation case studies will be carried out using Aspen HYSYS and Aspen Plus. 

Intended learning outcomes

On successful completion of this module a student should be able to:

  • Formulate strategies to carry out a process design and critically appraise the techniques and major commercial simulation tools for steady and dynamic process simulation. 
  • Apply competently the basic principles of process optimisation.
  • Design and analyse the performance of a process plant using simulation or optimisation tools.

Advanced Control Systems

Module Leader
  • Dr Liyun Lao
Aim
    To introduce fundamental concepts, principles, methodologies, and application for the design of advanced control systems for industrial applications.
Syllabus
    • System dynamics: Modelling of typical physical systems. Operating point. Linearization. Differential equation representation. State space representation of systems. Laplace transforms. Transfer functions. Block diagrams. SISO and MIMO systems. Time and frequency domain responses of systems.
    • Feedback control: Positive and negative feedback. Stability. Methods for stability analysis. Closed loop performance specification. PID controllers. Ziegler-Nichols. Self-tuning methods.
    • Enhanced controllers: Cascade control. Feedforward control. Control of non-linear systems. Control of systems with delay.
    • Digital controllers: Effects of sampling. Implementation of PID controller. Stability and tuning.
    • Advanced control topics: Hierarchical control. Kalman filter. System Identification. Model predictive control. Statistical process control. The use of expert systems and neural networks in industrial control.
    • Design packages for process control systems: Examples including Simulink and MATLAB.
    • Case studies: Examples will be chosen from a range of industrial systems including mechanical, chemical and fluid systems.
Intended learning outcomes

On successful completion of this module a student should be able to:

  • Evaluate and select appropriate modelling techniques for dynamic systems
  • Formulate control methodologies in feedback, feedforward and cascade loops
  • Recognise and critically appraise the key design tools and procedures for continuous and discrete controllers of dynamic systems.

Teaching team

You will be taught by our multidisciplinary team of leading technology experts including: Dr Kumar Patchigolla – Sr. Lecturer in Low Carbon Energy Systems. (Course Director for MSc in Energy Systems and Thermal Processes) Our teaching team work closely with business and have academic and industrial experience. The course also includes inputs from industry that will relate the theory to current best practice. 

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE).

 

How to apply

Online application form. UK students are normally expected to attend an interview and financial support is best discussed at this time. Overseas and EU students may be interviewed by telephone.