Fossil fuels such as coal, oil and natural gas still contribute around 85% of global energy consumption. Carbon capture, transport, use and storage are essential in reducing the environmental impact of growing energy production and consumption.

Ambitious worldwide targets for carbon reduction will rely on alternative energy sources but carbon reduction from conventional fuel sources is essential if we are to meet those targets without a drastic reduction in our energy use and consumption patterns. 

We are involved in developing methodologies and technologies for carbon capture, transport and storage in the following research areas:

  • Hydrogen production from gaseous and solid fuels
  • Post-combustion processes based on chemical absorption (e.g. using amines) or adsorption using solid sorbents
  • Pre-combustion CO2 capture processes for gaseous fuels and coal-based Integrated Gasification Combined Cycle (IGCC) with shift reactors for H2-rich syngas production
  • Oxy-fuel processes with carbon capture for coal-fired boilers and advanced gas turbines
  • Chemical looping processes for oxy-combustion, syngas upgrading an low cost oxygen production
  • Calcium looping for low cost CO2 capture
  • Membrane technologies for CO2 separation and oxygen generation
  • Advanced turbine development with power augmentation and exhaust gas recycle
  • Carbon transport, compression and pipeline engineering including corrosion studies.

Working with us

Our facilities

Clients and partners