GENERAL DYNAMICS

Ordnance and Tactical Systems-Canada Valleyfield

Nitrocellulose nitrating acids: expressing the content of the various constituents, review of the analytical methods, estimating the analytical precision requirements and establishing specification limits

Spiez, Switzerland; April 17-18, 2012

NC nitrating acid: Establishing tolerance

The requirements for control of the nitrating acid is an important part of nitration process control. Establishing a set of requirements is complicated by the large variations in response from the various mixture of nitrating acid.
This can be estimated from the graphs of composition acid mixture relative to nitrogen content in NC; the two most often used are from Miles and from Brissaud:

FiG. 123. Sapozhnikov diagram modified by Miles and Milbourn [20]. Composition of acid mixtures in weight $\%$.

Cellulose Nitrate: F.D.Miles, Interscience publishers NY, 1955, p. 66

Fig 1.13 Average nitrogen content of NC at equilibrium in a Nitric/Sulfuric nitration acid mix (ref: Brissaud)

Poudres, Propergol and explosives, Volume 2: J.Quinchon and J.Tranchant, 1984, p. 25

GENERAL DYNAMICS

Ordnance and Tactical Systems-Canada Valleyfield

NC nitrating acid: Establishing tolerance

NC nitrating acid: Establishing tolerance

GENERAL DYNAMICS

Ordnance and Tactical Systems-Canada Valleyfield

NC nitrating acid nominal composition

```
Nitrating acid compose of 5 major constituents
    -Sulfuric acid
    -Nitric acid
    H2SO
    HNO
    -Water
    -Nitrosyl sulphuric acid (or nitroso) }\mp@subsup{\textrm{HNOSO}}{4}{}\mathrm{ in water HNOSO
    -Organic solid / dissolved
Total Acidity TA (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ ) = Total Sulfuric TS (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{})+\mathrm{ Total Nitric TN (express as H2SO
    and
Total Sulfuric TS (express as H2SO4) = Actual Sulfuric AS (express as H2SO
Total Nitric TN (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{})=\mathrm{ Actual Nitric AN (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{})+\mathrm{ Actual Nitroso ANO (Express as H2}\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}
For precise quantification: }\mp@subsup{\textrm{HNOSO}}{4}{}\mathrm{ correction must be applied to H2SO
    The calculations yield:
                            Actual Sulfuric AS (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ )
                            Actual Nitric AN (express as }\mp@subsup{\textrm{HNO}}{3}{}\mathrm{ )
    Actual Nitroso NO (express as HNOSO
    And Water = 100-AS (express as H2SO4) - AN (express as HNO) - ANO (express as HNOSO
Sulfuric, Nitric and Water is often normalized to 100\%
(as in most graphs of composition acid mixture relative to nitrogen content in NC).
Water compounds the error and variations of all the other methods
```


NC nitrating acid common analysis

```
TA = HNO from AN + HNO
Total Acidity TA (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{})=\mathrm{ Titration in water with NaOH to pH 7.0
TS = H2SO
Total Sulfuric TS (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{})=\mathrm{ Evaporation of nitric acid on steam bath
TN = HNO
Total Nitric TN (express as H2SO4 or }\mp@subsup{\textrm{HNO}}{3}{}\mathrm{ ) = Mercury Nitrometer or Evaporation of nitric acid on steam bath
AN = HNO
Actual Nitric TN (express as }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ or }\mp@subsup{\textrm{HNO}}{3}{})=\mathrm{ Titration in concentrated sulfuric acid with Ferrous titrant (mV)
TNO = HNO2 from NO + Organic matter oxidized by oxidizer titrant
Total Nitroso TNO (express as }\mp@subsup{\textrm{HNOSO}}{4}{}\mathrm{ or }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ or }\mp@subsup{\textrm{HNO}}{3}{})=\mathrm{ Titration in water at room temperature with KMnO
ANO = HNO2 from NO
Actual Nitroso ANO (express as }\mp@subsup{\textrm{HNOSO}}{4}{}\mathrm{ or }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ or HNO
Water (express as H2O) > Numerous attempts to direct quantification -results inaccurate
-HNOSO
-Organic matters interfere with the quantification by KMnO
```


Required precision of analysis

Nitric acid quantification: some method detect AN others TN

| Actual Nitric \rightarrow | -Ferrous titration |
| :--- | :--- | :--- |
| Total Nitric \rightarrow | -Evaporation of nitric or Mercury nitrometer |

Those can corroborate only when taking Nitroso into consideration \rightarrow Nitroso corrected for organic matter

Organic matters interfere with the quantification by KMnO_{4} titration of the HNOSO_{4}
$\mathrm{TNO}=\mathrm{HNO}_{2}$ from $\mathrm{NO}+$ Organic matter oxidized by oxidizer titrant

Nitroso corrected for oxidizable organic matter: important for large nitroso and/or organic content

Two methods to correct from organic matter oxidation:
First:
$\mathrm{A} \rightarrow$ Boiling and titration with oxidizer $\left(\mathrm{KMnO}_{4}\right)=$ Organic $+\mathrm{HNO}_{2}$ from $\mathrm{NO}=$ Total Nitroso TNO
$\mathrm{B} \rightarrow$ Urea (eliminate $\left.\mathrm{HNO}_{2}\right)$, boiling and titration with oxidizer $\left(\mathrm{KMnO}_{4}\right)=$ Organic
$\mathrm{A}-\mathrm{B}=\mathrm{HNO}_{2}$ from $\mathrm{NO}=$ Actual Nitroso ANO
Second:
Titrate in medium below $0^{\circ} \mathrm{C}$ to prevent organic oxidation by titrant $=\mathrm{HNO}_{2}$ from $\mathrm{NO}=$ Actual Nitroso ANO
$-M e d i u m$ is water acidified with sulfuric acid as anti-freeze agent - kept in freezer at -10 to $-14^{\circ} \mathrm{C}$
-Titration is perform in about 5 minutes and final temperature is near $0^{\circ} \mathrm{C}$

NC nitrating acid common analysis

3 important components to control the nitrating acid: Nitric / Sulfuric / Water
Expected precision of determination related to number
of analysis required to obtain the result

ANO is obtained by applying 1 analytical methods:
-ANO directly by cold titration with KMnO_{4}
AN is obtained by applying an equivalent of 1 or 2 analytical methods:
-AN directly by ferrous titration or
-TN using Nitrometer and NO titration or
-TN using Nitric evaporation and NO titration
AS is obtained by applying an equivalent of 2 or 4 analytical methods:
-TS by Nitric evaporation and NO titration (once)
-TA by NaOH titration and TN by nitrometer and NO titration (once)
-TA by NaOH titration and AN by ferrous titration and NO titration (twice)
Water is obtained by applying an equivalent of 4 to 7 analytical methods:

- Obtained from Water $=(100-A N-A S-A N O)$

NC nitrating acid common analysis

β important components to control the nitrating acid: Nitric / Sulfuric / Water

Expected precision of determination related to number of analysis required to obtain the result
For addition or subtraction: the expected variation of final result V_{R} is obtained using the absolute variations V_{N} of the individual methods:

$$
\mathrm{V}_{\mathrm{R}}=\sqrt{\mathrm{V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\ldots \mathrm{V}_{\mathrm{N}}^{2}}
$$

Where;
V_{N} is the expected absolute variation from each individual methods contributing to the final result V_{R} Note: for multiplication and division, the V_{N} is the percent relative variation instead

Example

$$
\text { Water }=(100-\text { AN }- \text { AS }-\mathrm{ANO})
$$

Assuming:

AN	$=$	$28.60 \% \pm 0.06 \%$
AS	$=$	$61.90 \% \pm 0.10 \%$
ANO	$=$	$1.50 \% \pm 0.02 \%$

The expected variation on the water content is:

Thus water is expected to be $8.00 \% \pm 0.12 \%$

NC nitrating acid common analysis

3 important components to control the nitrating acid: Nitric / Sulfuric / Water

Method:	Typical relative accuracy:	Typical absolute variation Example in GD-Valleyfield for a NC at 13.45\% :
AN by Ferrous titration	Better than 0.2\%	$28.60 \% \pm 0.06 \%$
ANO by Cold KMnO_{4} titration	Better than 1%	$1.50 \% \pm 0.02 \%$
TS by Evaporation of nitric	Better than 0.2%	$63.05 \% \pm 0.13 \%$
TN by Evaporation of nitric	Better than 0.2%	$29.35 \% \pm 0.06 \%$
TA by NaOH titration	Better than 0.1%	$85.90 \% \pm 0.09 \%$
TN by Nitrometer	Better than 0.2%	$28.60 \% \pm 0.06 \%$

What is required to keep NC nitrogen content within $\pm 0.1 \%$ for NC between 12.50% and 13.45% nitrogen:

Water content (by difference)	Better than 2\%	$8.00 \% \pm 0.16 \%$
What was achieved under -properly adjusted analytical conditions at GD-Valleyfield:		
Water content (by difference)	Between about 1.3% and 2.0%	$8.00 \% \pm$ between 0.10% and 0.16%

In conclusion:
Precision and accuracy of lab analysis of NC mix acid is paramount if process is to achieve performance.
The requirement is maximum for caustic titrations and nitric analysis both for proper estimation of water content.

