GENERAL DYNAMICS

Ordnance and Tactical Systems-Canada Valleyfield

Nitrocellulose nitrating acids: expressing the content of the various constituents, review of the analytical methods, estimating the analytical precision requirements and establishing specification limits

5th International Nitrocellulose Symposium Spiez, Switzerland; April 17-18, 2012

Prepared by Mario Paquet

The requirements for control of the nitrating acid is an important part of nitration process control. Establishing a set of requirements is complicated by the large variations in response from the various mixture of nitrating acid.

This can be estimated from the graphs of composition acid mixture relative to nitrogen content in NC; the two most often used are from Miles and from Brissaud:

Cellulose Nitrate: F.D.Miles, Interscience publishers NY, 1955, p. 66

Poudres, Propergol and explosives, Volume 2: J.Quinchon and J.Tranchant, 1984, p.25

Nitric/Sulfuric nitration acid mix (ref: Brissaud)

GENERAL DYNAMICS

GENERAL DYNAMICS

GENERAL DYNAMICS

GENERAL DYNAMICS

GENERAL DYNAMICS

GENERAL DYNAMICS

GENERAL DYNAMICS

NC nitrating acid nominal composition

Nitrating acid compose of 5 major constituents

•Sulfuric acid H_2SO_4 •Nitric acid HNO_3

Water

•Nitrosyl sulphuric acid (or nitroso) HNOSO₄ in water $HNOSO_4 \rightarrow HNO_2$ and H_2SO_4

Organic solid / dissolved

Total Acidity TA (express as H_2SO_4) = Total Sulfuric TS (express as H_2SO_4) + Total Nitric TN (express as H_2SO_4)

and

Total Sulfuric TS (express as H_2SO_4) = Actual Sulfuric AS (express as H_2SO_4) + Actual Nitroso ANO (Express as H_2SO_4)

Total Nitric TN (express as H₂SO₄) = Actual Nitric AN (express as H₂SO₄) + Actual Nitroso ANO (Express as H₂SO₄)

For precise quantification: HNOSO₄ correction must be applied to H₂SO₄ and HNO₃ quantification

The calculations yield:

Actual Sulfuric AS (express as H₂SO₄)

Actual Nitric AN (express as HNO₃)

Actual Nitroso NO (express as HNOSO₄)

And Water = 100 - AS (express as H_2SO_4) - AN (express as HNO_3) - ANO (express as $HNOSO_4$)

Sulfuric, Nitric and Water is often normalized to 100% (as in most graphs of composition acid mixture relative to nitrogen content in NC).

Water compounds the error and variations of all the other methods

GENERAL DYNAMICS

TA = HNO₃ from AN + HNO₂ from NO + H₂SO₄ from AS + H₂SO₄ from NO

Total Acidity TA (express as H₂SO₄) = Titration in water with NaOH to pH 7.0

 $TS = H_2SO_4$ from AS + H_2SO_4 from NO

Total Sulfuric TS (express as H₂SO₄) = Evaporation of nitric acid on steam bath

 $TN = HNO_3$ for AN + HNO_2 from NO

Total Nitric TN (express as H₂SO₄ or HNO₃) = Mercury Nitrometer or Evaporation of nitric acid on steam bath

 $AN = HNO_3$ for AN

Actual Nitric TN (express as H₂SO₄ or HNO₃) = Titration in concentrated sulfuric acid with Ferrous titrant (mV)

TNO = HNO₂ from NO + Organic matter oxidized by oxidizer titrant

Total Nitroso TNO (express as HNOSO₄ or H₂SO₄ or HNO₃) = Titration in water at room temperature with KMnO₄ (auto indicator or mV)

ANO = HNO₂ from NO

Actual Nitroso ANO (express as HNOSO₄ or H₂SO₄ or HNO₃) = Titration in water at cold (near 0°C) with KMnO₄ (auto indicator or mV)

Water (express as H_2O) \rightarrow Numerous attempts to direct quantification –results inaccurate

-HNOSO $_4$ correction are to be applied to H_2SO_4 and HNO_3 determination for precise quantification of water

-Organic matters interfere with the quantification by KMnO₄ titration of the HNOSO₄ (variation is seasonal)

GENERAL DYNAMICS

Required precision of analysis

Nitric acid quantification: some method detect AN others TN

Actual Nitric → -Ferrous titration

Total Nitric → -Evaporation of nitric or Mercury nitrometer

Those can corroborate only when taking Nitroso into consideration → Nitroso corrected for organic matter

Organic matters interfere with the quantification by KMnO₄ titration of the HNOSO₄

TNO = HNO₂ from NO + Organic matter oxidized by oxidizer titrant

Nitroso corrected for oxidizable organic matter: important for large nitroso and/or organic content

Two methods to correct from organic matter oxidation:

First:

A \rightarrow Boiling and titration with oxidizer (KMnO₄) = Organic + HNO₂ from NO = **Total Nitroso TNO**

 $B \rightarrow Urea$ (eliminate HNO₂), boiling and titration with oxidizer (KMnO₄) = Organic

 $A - B = HNO_2$ from NO = Actual Nitroso ANO

Second:

Titrate in medium below 0° C to prevent organic oxidation by titrant = HNO_2 from NO = Actual Nitroso ANO

-Medium is water acidified with sulfuric acid as anti-freeze agent - kept in freezer at -10 to -14°C

-Titration is perform in about 5 minutes and final temperature is near 0°C

GENERAL DYNAMICS

3 important components to control the nitrating acid: Nitric / Sulfuric / Water

Expected precision of determination related to number of analysis required to obtain the result

ANO is obtained by applying 1 analytical methods:

-ANO directly by cold titration with KMnO₄

AN is obtained by applying an equivalent of 1 or 2 analytical methods:

- -AN directly by ferrous titration or
- -TN using Nitrometer and NO titration or
- -TN using Nitric evaporation and NO titration

AS is obtained by applying an equivalent of 2 or 4 analytical methods:

- -TS by Nitric evaporation and NO titration (once)
- -TA by NaOH titration and TN by nitrometer and NO titration (once)
- -TA by NaOH titration and AN by ferrous titration and NO titration (twice)

Water is obtained by applying an equivalent of 4 to 7 analytical methods:

- Obtained from Water = (100 - AN - AS - ANO)

GENERAL DYNAMICS

3 important components to control the nitrating acid: Nitric / Sulfuric / Water

Expected precision of determination related to number

of analysis required to obtain the result

For addition or subtraction: the expected variation of final result V_R is obtained using the absolute variations V_N of the individual methods:

$$V_R = \sqrt{V_2^2 + V_3^2 + V_4^2 + ... V_N^2}$$

Where;

 V_N is the expected absolute variation from each individual methods contributing to the final result V_R Note: for multiplication and division, the V_N is the percent relative variation instead

Example

The expected variation on the water content is:

Water = (100 - AN - AS - ANO)

$$V_W = \sqrt{V_{AN}^2 + V_{AS}^2 + V_{ANO}^2} = \sqrt{0.06^2 + 0.10^2 + 0.02^2} = 0.12\%$$

Thus water is expected to be 8.00 % ± 0.12 %

GENERAL DYNAMICS

3 important components to control the nitrating acid: Nitric / Sulfuric / Water

Method:	Typical relative accuracy:	Typical absolute variation Example in GD-Valleyfield for a NC at 13.45% :
AN by Ferrous titration	Better than 0.2%	28.60% ± 0.06 %
ANO by Cold KMnO ₄ titration	Better than 1%	1.50% ± 0.02 %
TS by Evaporation of nitric	Better than 0.2%	63.05% ± 0.13 %
TN by Evaporation of nitric	Better than 0.2%	29.35% ± 0.06 %
TA by NaOH titration	Better than 0.1%	85.90% ± 0.09%
TN by Nitrometer	Better than 0.2%	28.60% ± 0.06 %
14/1-4 : 14- 1 10 14		40 500/ 40 450/
What is required to keep NC nitroge Water content (by difference)	n content within ±0.1% for NC better than 2%	ween 12.50% and 13.45% nitrogen: 8.00 % ± 0.16%
Water content (by difference)		8.00 % ± 0.16%

In conclusion:

Precision and accuracy of lab analysis of NC mix acid is paramount if process is to achieve performance. The requirement is maximum for caustic titrations and nitric analysis both for proper estimation of water content.

GENERAL DYNAMICS