

5th International Nitrocellulose Symposium April 17-18, 2012 – Spiez, Switzerland

Qualitiy Aspects and Testing of Industrial NC Dr.Herbert Nagorski

Industrial NC

- Nitrocellulose in industrial applications is known since more than 100 years.
- Nitrocellulose has been used to produce Celluloid for

Photographic media (film)

Toys, tennistable balls

Devices for household applications

Binder component in lacquers and inks

 While Celluloid more or less disappeared - Nitrocellulose is still well regarded for binder systems in lacquers and printing inks.

Protective surface coatings

Lacquers

Decorative coatings (wood lacquer)

Car repair systems

Corrosion protection

Electrical varnish

Hagedorn | NC

Dr. Herbert Nagorski - Hagedorn NC GmbH

Main applications

Printing Inks

Printing Inks is the major application in Europe

Lacquers

Differencies

- ❖ Industrial NC covers the range 10.7 to 12.6 % Nitrogen
 - In energetic NC more than 80% of the cellulose-hydroxy groups are exchanged by nitro groups
 - Only 60 to 75 % of the cellulose-hydroxy groups are substituted by NO₂ in industrial NC

The N-content in industrial NC is always below 12.6 %

Characterization

According to DIN 53179 Industrial NC is characterized by

E, A or M Degree of substitution (=nitrogen content)

E = Ester soluble (11,8 - 12, 3 % N)

M = Ester/Alcohol Mix soluble (11,3 - 11,8 % N)

A = Alcohol soluble (10,7 - 11, 3 % N)

4 to 35 Viscosity number

(% of NC in 95% acetone/5% water

to achieve a viscostiy of 400 ± 25 mPa*s measured by Höppler falling ball method)

Water, Ethanol, **Damping agent**

30 or 35 Concentration of damping agent

Hagedorn NC

Examples:

IPA, Butanol

A 27 Eth 35 E 9 IPA 30

Medium viscosity alcohol soluble NC damped with 35 % Ethanol

High viscosity ester soluble NC damped with 30 % IPA

Characterization

According to DIN 53179 Industrial NC is characterized by

E, A or M Degree of substitution (=nitrogen content)

E = Ester soluble (11,8 - 12, 3 % N)

M = Ester/Alcohol Mix soluble (11,3 - 11,8 % N)

A = Alcohol soluble (10,7 - 11, 3 % N)

4 to 35 Viscosity number

(% of NC in 95% acetone/5% water to achieve a viscostiy of 400 ± 25 mPa*s measured by Höppler falling ball method)

Plasticizer Damping agent

ATBC, EPO, PU

20

Concentration of plasticizer as damping agent

H 22.5 ATBC 20

Hagedorn | NC

Dr.Herbert Nagorski - Hagedorn NC GmbH

Hagedorn NC

Main criteria of industrial NC

Solubility

A-Types: Alcohols, Ketones, Esters

E-Types: Esters, Ketones

Both types are insoluble in hydrocarbons and water

Viscosity

The viscosity plays a major role in lacquers and printing inks

Main criteria of industrial NC

Solubility

A-Types: Alcohols, Ketones, Esters

E-Types: Esters, Ketones

Both types are insoluble in hydrocarbons and water

Ester soluble NC: Decorative coatings

Wood lacquer

Electrical varnisch

Alcohol soluble NC: Printing Inks

Main criteria of industrial NC Viscosity

Beside the degree of substitution the viscosity of a NC solution is the second main factor to distinguish NC for industrial applications.

- Depending on final application industrial NC is available in a wide range of viscosities.
- Without any treatment nitration of cellulose leads to high viscous products (high molecular weight).
- During steam pressure boiling NC is stabilized and depolymerized
- Temperature and reaction time in the boiling process allows to adjust the desired viscoisty

 $T = up to 140^{\circ}C (2.8 bar)$ t = 20 min - 4 hours

Viscosity

Viscosity is determined with a falling ball viscosimeter by Höppler (ISO 14446).

X % of an ISO-Type X
(EU-Norm-Type) in a solution of
95 % acetone and 5 % water gives
a viscosity of 400 +- 25 mPa*s

27% of A27 Eth.35

or

9 % of E 9 IPA30

in a solution of 95% acetone + 5% water gives the same viscosity of 400 ± 25 mPa*s

Hagedorn | NC

Dr.Herbert Nagorski - Hagedorn NC GmbH

Viscosity

There are some other methods to determine viscosity and to characterize NC (esp. in USA and China)

According to ASTM D 301-56 and D 1343-56 the viscosity is measured as falling time of a steel ball (3/32 inch Ø) through a column filled with a 12.2 % NC solution dissolved in a mixture of

25 % Ethanol

55 % Toluene

20 % Ethylacetate

Examples: $RS \frac{1}{2} sec = E 23$

 $SS \frac{1}{4} sec = A 27$

Rawmaterials

Use of Cotton Linters

Hagedorn | NC

Dr.Herbert Nagorski – Hagedorn NC GmbH

Receiving Inspection

Cellulose	Acids	Alcohols
Whiteness	HNO ₃	Concentration (Density)
Moisture	H ₂ SO ₄ (SO ₃)	Acidity
Calcium-content		Alkalinity (Bioalcohol)
lpha- Cellulose content		
Iron –content		

Most important test is the α - Cellulose content

Suitability of Cellulose Types for Industrial NC

Cellulose Type		Suited for
Cotton Linte	ers	All Types of industrial NC
Wood Pulp	$>$ 95 % α - Cellulose	E-Grades, A-Grades* (*except some specific applications)
Wood Pulp	$>$ 92 % α - Cellulose	E-Grades
Wood Pulp	$<$ 92 % α - Cellulose	Not suited

- Hemicellulose if present is nitrated as well
- ❖ Nitrated hemicellulose if not washed out sufficiently causes turbid NC – solutions

Production set up and nitration

Posttreatment and Stabilization

Centrifugation and washing

Separation of excess nitration acid mix from the raw-nitrate

Steam pressure boiling

Stabilization and setting the viscosity ≤ 2.8 bar steam $\leq 140^{\circ}$ C 0.5 - 4.0 h

Washing

Separation of residuals

Viscosity
Stability
Acidity
Optical appearance (in solution)
Nitrogen content

Mixing

Homogenization of various lots

Viscosity
Optical properties
Evtl. Tests according to customer agreements
Accidity
Stability

Damping

With Water, Ethanol, IPA or Butanol (replacement of water)

Final Inspection

Colour
Haze
Viscosity (Internal-, Customer-, Iso-Method^)
Stability
Nitrogen Content
Alcohol solubility
Water content
Fibre length
Residual acid (NO₃/SO₄)
pH-Value

Hagedorn NC

Packing, Storage and Shipping

Dr. Herbert Nagorski – Hagedorn NC GmbH

Stability

Stability is one the most important properties of industrial NC

Tested from every lot produced in production and during final inspection .

Detection of NO_x that is evolved from 1 g dry NC heated for 2 h at 132 $^{\circ}$ C \Rightarrow Target \leq 2,5 ml

Typical values:		
A – Types	1.0 – 1.5 ml	
E – Types	1.5 – 2.0 ml	

Stability acc. to Bergman Junk

Hagedorn | NC

Dr.Herbert Nagorski - Hagedorn NC GmbH

Determination of damping

The concentration of damping agent is determined by NIR spectroscopy

- Sample disk ($\emptyset = 138 \text{ mm}$; V = 150 ml)
- completely filled with NC (depending on NC-grade sample weight = 50 - 100 g)
- not only small sample amount

100 spectra taken within 45 sec

Random measurement of NC sample material

Determination of damping

Simple and quick measurement of

- Total amount of damping agent
- Moisture content
- Alcohol content

Hagedorn NC

Determination of damping

The NIR – method to determine the damping agent is not only used in the QC-Lab

The same method is applied in production controll with a simple, easy handling device

NIR spectra of Cellulose

Hagedorn | NC

Calibration of this method is based on several hundred samples

Dr. Herbert Nagorski – Hagedorn NC GmbH

NIR spectra of Ethanol damped NC

Acidity of NC

10 g of wet NC suspended in 100 ml of water

Addition of a few drops of Methylorange

Red solution = NC is still acidic

Yellow solution = NC is neutral

pH-Value

5 g of wet NC suspended in 50 ml water

After 10 min of separation the water is measured with pH dipstick

Fibre length

- 10 g dry NC in measuring cylinder filled up with water to a Volume of 250 ml
- After one hour the volume of the separated NC is recorded
- The fibre length is calculated as ml/10g

Solubility in Alcohol

- 0,5 g dry NC dissolved in 75 ml Ethanol (94 %)
- Rotation for 3h separation of not dissolved NC for 3h
- 50 ml of the solution evaporated to 25 ml Volume
- Precipitation of the dissolved NC by adding some water.
- Evaporation to dry weigth

Optical Properties (final inspection QC-Lab)

Measuring the optical properties is difficult if the final application is not sufficiently known.

To determine optical properties two standards are in use

Alcohol soluble NC in a mixture of

Ethylacetate

Butylacetate

Butanol

Toluene

Ester soluble NC in a mixture of

Ethylacetate

Glycol

Ethanol

Toluene

There are a number of customer specific tests according to the desired application

Example:

After Addtion of Isocyanate the solution has to stay clear for at least 8h

Hagedorn NC

Dr. Herbert Nagorski – Hagedorn NC GmbH

Optical Properties (final inspection QC-Lab)

Evaluation of optical appearance of

- Colour Index according to Hazen (APHA) and/or Gardner
- Turbidity (Measurement with Ratio/XR Device against a Standard (4000 Te(F))
- Visible Fibres
 Amount and Length of visible fibres
- Clarity of the solution
- Visible particles visible particles (white/black), knots, impurities

All optical properties are determined in solution not on NC as produced

Optical Properties

Difference between Standard and Cosmetic Quality

Plasticizer

If plasticizer is used for damping

the plasticizer is isolated by extraction

Basics

Ester soluble NC: Decorative coatings

Wood lacquer

Electrical varnisch

Alcohol soluble NC: Printing Inks

Film properties:

High viscosity NC: film forming

relatively flexible

Low viscosity NC: hard, brittle

+ transparent, nearly odourless

+ sealing resistant (200-220℃ / 392 – 428年)

+ Resistant against fats, oils, acids, water

+ good grinding behaviour for pigments

+ fast drying

- low adhesion on polyolefin films

- compatability with other binder systems

Hagedorn NC

Dr.Herbert Nagorski - Hagedorn NC GmbH

Sealing resistance

But NC should not be used for Inks applied in packaging for sterilization (>100 $^{\circ}$ C; > 30 min = retort packaging)

NC printing inks withstand sealing temperatures up to 220℃ for short times

Evaluation of binder characteristics

Film forming optical evaluation of smoothness, Gloss

Drying time

Time to reach constant weight

Blocking

Compatibilty with other binder system

Weatherbility

Lightstability (Xenon-Test)

For all these test the NC solution is applied on specific paper or on glass plates in defined thicknesses

Evaluation of film properties

starts with preparation of a test ink, which is than applied to standard packaging substrates

- Bi-oriented polypropylene (OPP)
- Polyester
- Metallized OPP
- Aluminum
- Polyamid

Evaluation is made for

- Adhesion
- Scotch Tape Test
- Blocking

Criteria for the use of printing inks

Medium to high viscous NC types for transparent, non-coloured coatings

low application weight due to high viscosity, flexible films

Low viscous NC types for pigmented printing

higher application weight

more binder to fix pigments

rigid-brittle layers, (Use of Co-binder or plasticizer necessary)

Composition of printing inks

Hagedorn | NC

Dry weight of Ink

 $= 3 - 6 \text{ g/m}^2$ $= 1 - 2 \text{ g/m}^2$ Binder

Pigment

 $= 1 - 2 \text{ g/m}^2$

Dr.Herbert Nagorski – Hagedorn NC GmbH

Effekt of viscosity on pigment concentration

Comparison of two different inks made of low / high viscosity NC

	NC – Ink with AH 27	NC – Ink with AH 9
Wet weight of ink	$9 - 18 \text{ g/m}^2$	$3 - 6 \text{ g/m}^2$
Dry weight of ink	$3 - 6 \text{ g/m}^2$	$1 - 3 \text{ g/m}^2$
Binder (NC)	$1-2 \text{ g/m}^2$	$0.3 - 0.7 \text{ g/m}^2$
Pigment	$1-2 \text{ g/m}^2$	$0.3 - 0.7 \text{ g/m}^2$

➤ Inks made from high viscosity NC lead to lower dry weight on the subtrate = lower pigment concentration (g/m²)

Low viscosity NC is preferred in printing inks

Due to hardness of low viscosity NC layers, printing inks usually
contain plasticizer and/or cobinder

Dr. Herbert Nagorski - Hagedorn NC GmbH

Hagedorn-NC GmbH
Dr. Herbert Nagorski
General Manager Technology
Emsufer 4
49808 Lingen

Fon ++49 (0) 591-9148-25 Fax ++49 (0) 591-9148-41 herbert.nagorski@hagedorn.de