

armasuisse

New Standards for Nitrocellulose Testing – STANAG 4178 Ed. 2 // MIL-DTL-244 B/ECP / C

Beat Vogelsanger, Ruth Sopranetti, Beate Pausch, Marc Müller and Dominik Werfl ¹ Patrick Folly ² Mario Paquet ³ Lucas R Lopez, Lydia Chang ⁴

- ¹ NITROCHEMIE WIMMIS AG, Switzerland
- ² FEDERAL DEPARTMENT OF DEFENCE, armasuisse, Thun, Switzerland
- ³ GENERAL DYNAMICS OTS, Valleyfield, Canada
- 4 US DoD, ARDEC, Picatinny NJ, USA

Contents

- Introduction
 - History of Standards for NC Testing
 - Differences between STANAG 4178 Ed. 2 and MIL-DTL-244 B/ECP / C
 - Status of Ratification / Implementation
- Round Robin Test (RRT) on Nitrocellulose Analysis
- Highlights of the new Standards
- Drawbacks / not yet solved Problems
- Summary and Outlook

Introduction – Recent History of Standards for NC Testing

Differences between STANAG 4178 and MIL-DTL-244

Standard	STANAG 4178 Ed. 2	MIL-DTL-244 B/ECP / C
Classification of NCs		✓ (Grades A–F; Types I-III)
Specification for NCs	(only typical ranges)	✓
Testing Procedures NC	✓ (all relevant tests)	✓ (only required tests)
Testing Quality Requirements	✓	
Alterations for chalked NC	✓	
Requirements Raw Material		✓
Requirements Prod. Process		✓

- STANAG 4178 is a <u>compendium</u> of nitrocellulose <u>test procedures</u>
- MIL-DTL-244 is a <u>specification for nitrocellulose</u> that also contains test procedures (but only the ones that are needed for this specification)

Test Methods of STANAG 4178 Ed. 2 and MIL-DTL-244 B/ECP / C

Basic Characterisation

- **▶ Nitrogen Content**
 - Ferrous Ion Titration
 - Nitrogen Analyzer
 - Combustion Calorimetry
 - (Devarda's Alloy Method)
 - (Schulze-Tiemann)
 - (Nitrometer)
- **▶** Ether-Alcohol Solubles
 - Filtration Method
 - Evaporation Method
- **▶** Acetone Insolubles

Stability

- ▶ 132°C Stability Test
 - Bergmann-Junk
- Bergmann-Junk-Siebert
- ▶ 134.5°C Heat Test (MV)

Purity

- Visual Purity Test
- **▶** Ash
- **▶** Grit
- Ionic Impurities
- Ion Chromatography
- Sulphate Content
- Residual Acidity
- Alkalinity
- Calcium by Spectroscopy
- Oil and Grease Content
- (Abel-Type Heat Tests)

Fibre Quality

- Fineness
- Fibre Length Distribution
- **▶** Water Retention Value
- **▶ Drainability**
- Agglomerates

Polymeric Properties

- Viscosity
- Molecular Mass Distribut.

Water / Alcohol Cont.

- **▶ Total Volatile Content**
 - Oven Method
 - Moisture Analyzer
- Water Content
- Karl-Fischer Titration
- Karl-Fischer Oven
- Alcohol and / or Water
- Gas Chromatography
- NIR Spectroscopy

Other Properties

- ► Temperature of Ignition
- Heat of Explosion

STANAG 4178 Ed. 2 Ratification Status

- STANAG 4178 Ed. 2 is currently in NATO ratification
 - ▶ 11 nations including US, UK and France have already ratified
 - ▶ a total of 14 nations (50% of the 28 NATO nations) need to ratify
 - many nations have already implemented the new testing procedures

MIL-DTL-244 B / C Status of Implementation

- MIL-DTL-244 B with ECP # R10C3001 (2010)
 - **▶** ECP = Engineering Change Proposal
 - Officially implemented
 - ▶ Currently used by the US ARMY, NAVY and Air Force
- MIL-DTL-244 C (2012)
 - ▶ Approved by the Nitrocellulose Configuration Manager (PM-CAS)
 - ► ARDEC standardization group is working on the document to ensure spec language complies with DoD requirements
 - Not yet implemented!

Test procedures of MIL-DTL-244 B/ECP, MIL-DTL-244 C and STANAG 4178 Ed. 2 are identical

Round Robin Test (RRT) on Nitrocellulose Analysis

Mandate: NATO/PfP AC/326 SG1 CNG

- ▶ Implementation of new methods (STANAG 4178 Ed.2 / MIL-DTL-244B/ECP)
- ▶ To improve performance / get confidence in new testing methods
- ▶ To obtain an idea about typical variations between labs
- In the long term: To trigger communication within the NC community and to further improve testing methods
- Samples: 6 samples; each 2 samples Grade A, B, C
 - ▶ 3 samples with known results (to adjust procedures / gain confidence)
 - ▶ 3 samples with unknown results (for RRT).
- <u>Tests for RRT:</u> N-Content, EA-Solubility, Acetone Insolubles, 134.5°C Heat Test, 132°C Stability Test (Bergmann-Junk), Fineness, Viscosity
- If you are interested to participate, please inform the organisers

Some Highlights of the new Standards

- Ionic Impurities Ion Chromatography Method:
 - Modern method to assess <u>numerous different</u> <u>ionic impurities</u> simultaneously

- Polymeric Properties Gel Permeation Chromatography GPC:
 - Modern method to assess the <u>distribution</u> of degree of polymerisation (conventional viscosity only results <u>indirect</u> measure for <u>average</u> degree of polymerisation)

- Tests for Fibre Quality:
 - Different test method to investigate the fibre properties
 - ▶ A new method to assess the fraction of the NC which is present as <u>agglomerates</u>
 - Several indirect methods to estimate the amount of cutting / grinding / refining the NC had undergone
 - ► A new direct method to determine the <u>real fibre</u> <u>length distribution</u> of the NC

Highlight 1: Ion Chromatography Method

- New method; procedure has been supplied by USA
- ▶ Can be used to assess numerous different ionic impurities
- Principle: Extraction of the ions from the NC with boiling water, followed by analysis with ion chromatography
- Recommended method in STANAG 4178 Ed. 2!

Chromatograms provided by

Highlight 2: Gel Permeation Chromatography

<u>Degree of Polymerisation = Length of NC Polymer Chain</u>

Typical Value: n = 500 - 1'400 (= Molecular Mass of 300'000 - 800'000 Daltons; may be lower or higher for specific NC qualities)

Viscosity → Average Degree of Polymerisation GPC → <u>Distribution</u> of Degree of Polymerisation / Molecular Mass

Highlight 3: New Methods for Fibre Length Determination

The <u>Fibre Length</u> of NC is a process relevant property as it reveals the amount of cutting / grinding / refining the NC had undergone during manufacture

Highlight 3: Fibre Quality Analyzer – Principle of Operation

Highlight 3: Fibre Quality Analyzer – Image Analysis

Image analysis using the "Skeletonising Method": Fibre length is determined as longest direct way between two endpoints of the particle (fibre)

Agglomerates can be eliminated from analysis

Highlight 3: Fibre Quality Analyzer – Repeatability

Highlight 3: Fibre Quality Analyzer – Refining Process

Highlight 3: Fibre Quality Analyzer – Different Instruments

Drawbacks / not yet solved Problems

General:

- Many NC tests are still "old-fashioned" wet-chemistry methods (time-consuming, difficult to automatise, yield little information)
- ▶ No test for characterisation of NC processability available

Nitrogen Content of NC (Mean Value):

- Existing test methods are complex and error-prone
- Distribution of Nitrogen Content of NC:
 - No method for direct determination available
 - ▶ Is determined indirectly via solubility of NC in solvents

Polymeric Properties:

- ▶ GPC method is not (yet) reproducible enough for routine testing
- ▶ Falling sphere viscosity method is not suitable for low-viscosity NC
- **Fibre Quality Agglomerate Content:**
 - Actual method is not suitable for low agglomerate contents

Drawback 1: Assessment of Average Nitrogen Content of NC

- All existing test methods for average N-content are complex + error-prone
- **Ferrous Ion Titration (FS/FAS) is reference method, but:**
 - ▶ Many labs have reported problems with this method
 - ▶ Performance / results of FS/FAS depend strongly on several experimental parameters → method is not robust
 - ▶ Not tolerable (and difficult to recognise) systematic deviations may appear together with excellent precision
 - ▶ Exactly following the operating procedure as described in the standards (MIL/ STANAG) does not guarantee correct results!
- For example, STANAG 4178 Ed.2 / MIL-DTL-244B/ECP:
 - ▶ Allows to use from 50 mL to 125 mL of sulphuric acid
 - Does not specify the temperature of the acid (as long as below 25°C)
 - Specifies titrant temperature to not exceed 25°C for >30 s and to not exceed 35°C for >10 s and to not exceed 40°C at all
 - ▶ However, changes within this range already markedly alter the result !!!

Drawback 1: Average Nitrogen Content of NC – FAS Method

Adding <u>cold</u> sulphuric acid to NC

- → no bubbles
- → <u>no</u> "loss of nitrogen"

These effects seen for NC (bubbles

→ strong sensitivity on H₂SO₄ volume and T as well as on titration T) are almost negligible for KNO₃ calibration standard !!!

Adding 22°C <u>warm</u> sulphuric acid to NC
→ micro-bubbles of NO → "loss of nitrogen"

Drawback 2: No Method for Distribution of Nitrogen Content

- No standardised method for <u>direct</u> determination of the distribution of nitrogen content of NC (\rightarrow quality of nitration) is available
- Solubility of the NC in Ether-Alcohol and Acetone gives only crude indication regarding N-content distribution but is the only available method

Summary

- The new standards STANAG 4178 Ed. 2 and MIL-DTL-244B/ECP / MIL-DTL- 244C provide for the first time in history an internationally accepted set of NC testing methods
- STANAG 4178 Ed. 2 is currently in NATO ratification (11 nations including US, UK and France have already ratified; a total of 14 is needed)
- MIL-DTL-244B/ECP is currently used in US ARMY, NAVY and Air Force; MIL-DTL-244C will be implemented by US when ARDEC Standardization Group complete the review
- The new test methods are already implemented in many nations
- An international Round Robin Test will be organised to support further implementation of the new methods
- Test methods in these standards are neither perfect nor complete; further work is necessary to improve the actual methods as well as to develop new / better tests

Outlook

- Ratification / approval / implementation of STANAG 4178 Ed. 2 / MIL-DTL-244C needs to be completed
- Tests which are new in these standards or known to produce problems should be carefully examined and, if necessary, further improved (e.g. Nitrogen Content, Ion Chromatography, Gel Permeation Chromatography* and Fibre Length Distribution)
- New / improved test methods should be developed and included:
 - ▶ Test methods that better characterise the Processability of NC
 - ▶ Better test methods for <u>Nitrogen Content Distribution</u>* to replace Ether-Alcohol / Acetone Solubility (e.g. chromatographic method)
 - ▶ New method suitable for low <u>Agglomerate</u>* contents
 - ▶ Modern spectroscopic methods such as IR / Near IR* / Raman Spectroscopy with multivariate analysis to predict important properties such as moisture content, nitrogen content, solubility, viscosity, etc.
- * Presentations on these issues will be given in the 5th NC Symposium

Thanks very much for your attention!

armasuisse

GENERAL DYNAMICS Ordnance and Tactical Systems-Canada