

UNIVERSITY OF CAMBRIDGE

Cavendish Laboratory Fracture & Shock Physics

Split Hopkinson Pressure Bar Studies of a Nitrocellulose-based PBX System

AWE Nitrocellulose Meeting

April 2007

D.R. Drodge, D.M. Williamson, W.G. Proud

Overview

- ➤ Materials: EDC37 and NC-K10
- ➤ Technique: Split-Hopkinson Pressure Bar with Pulse Shaping and Temperature Control.
- Results & Discussion

Sample Materials

Sample Materials

EDC37: 91% HMX filler, 9% NC-K10 binder

NC-K10: plasticised nitrocellulose

Motivation: examine sub-T_g behaviour to extend current data set.

DMTA figure courtesy of Dr D. Williamson

Story So Far

> We already have EDC37 data for:

Fixed T (room temp), varying strain rates

Fixed strain rate (10⁻³ s⁻¹), varying T (D.M. Williamson et. al., paper awaiting publication)

... ramp up strain rate, drop T, see what happens...

Viscoelastic Response

Temperature OR Loading Time Period

Not-so-subtle differences...

- > Strain Rate vs. Loading Frequency
- > Small strain vs. strained to failure
- > Pure polymer vs. filled polymer...

Current Data...

Temperature OR Loading Time Period

Plan...

Use high strain-rate apparatus to raise the transition temperature

Use cooling chamber to induce glassy behaviour

Find something out.

Apparatus 10

Gauges measure strain in Bars

$$\dot{\varepsilon} = \frac{v_R - v_L}{L} \qquad \sigma = \frac{F_T}{A_S}$$
(assumes equilibrium)

$$\sigma_R = rac{F_T}{A_S}$$
 Do Front and Back stresses match? $\sigma_L = rac{F_I + F_R}{A}$...if not, we have a problem

Shallower Pulses = Reach Equilibrium Sooner

- >Copper Shim (annealed at 450C for 2hrs)
- >Place on end of input bar to cushion blow

Other considerations

- Friction. Mitigate by lubrication with appropriate substance (silicon grease)
- ➤ Inertia. Demonstrated* to be negligible for strain rates below 10⁵s⁻¹ provided sample geometry is sensible.

Heating / Cooling System

Thermocouple on output bar.

Heating / Cooling System

EDC37 Samples

Supplied in disc form by AWE

3mm Length 8mm Diameter

NC-K10 Samples

Supplied as ~1mm thick sheets by AWE

- ➤ Make double-thickness sheet
- ➤ Punch out ~3mm diameter discs
- ➤ Place between lubricated bars and squeeze
- ➤ Measure dimensions using sophisticated multichromatic photometric array

NC-K10 Samples

NC-K10 Samples

Results 27

EDC37 Results

Failure

EDC37 Results

Sample	Length / mm	Temperature / $^{\circ}C$	$\dot{\varepsilon}$ / s^{-1}	σ_y / MPa
E3	3.20	60	2500	9
E10	3.19	40	1800	17
E6	3.19	20	3000	24
E8	3.19	0	1900	41
E5	3.21	-14	2300	60
C9	3.00	-25	2300	78
C5	3.00	-36	2400	104
C7	2.98	-50	2100	110
C2	2.99	-75	2000	125
C10	2.99	-100	2400	150

EDC37 Strength

EDC37 Strength

EDC37 Modulus Estimate

- Usually, elastic behaviour occurs before sample equilibrium reached
- Pulse Shaping allows earlier equilibrium
- Stress-strain gradient offers estimate of elastic modulus

EDC37 Modulus Estimate

EDC37 Modulus Estimate

NC-K10 Results

NC-K10 Results

Sample	Length / mm	Diameter $/ mm$	Temperature / $^{\circ}C$	$\dot{\varepsilon} / s^{-1}$	σ_y / MPa
NC2	2.0	5.0	22	0	-
NC12	2.9	5.9	0	0	2200
NC11	2.2	6.1	-30	4	2600
NC10	2.1	5.2	-40	15	2800
NC13	2.0	5.0	-45	55	2100
NC9	2.3	5.0	-50	102	3000
NC8	2.5	5.9	-60	107	3000
NC6	2.3	4.5	-75	90	3700
NC7	2.1	4.9	-75	40	3100
NC3	2.0	5.0	-100	64	3500
NC4	1.9	5.2	-100	58	3500
NC5	2.3	5.6	-100	49	1700

"Yield Stress" taken as zero for "melt"

Stresses have near 10% error from poorly defined sample diameter/area

Combined Strength Results

Combined Strength Results

Temperature / °C

Conclusions

- Hopkinson Bars allow detailed study of viscoelastic effects in high rate impact around the glass transition
- EDC37 Failure Stress continues to rise below T_g
- High rate modulus estimates describe a near-ideal viscoelastic master curve at low strains
- NC-K10 Failure Stress peaks at T ~ -60C, then decreases
- Binder transition at lower T than EDC37, sharper

Extension

- Cold machining to produce better NC-K10 specimens from new material
- High-speed photography and softrecovery techniques to confirm failure modes
- Simultaneous diametric measurements to find Poisson's Ratio
- Investigate crystal behaviour at low temperatures

Acknowledgments

- D.R. Drodge and D.M. Williamson thank AWE
- W.G. Proud thanks QinetiQ