

The Affect of Water on the Stability of Nitrocellulose in THF Solution

Dr Paul R Deacon

Explosive Materials, Ageing Mechanisms

AWE Plc

Introduction

- Nitrocellulose dissolution in THF
 - development of GPC analytical methodology
- What affects the stability of nitrocellulose in THF solution?
 - suspect temperature and water content
- Experimental observations
 - GPC observations in wet / dry THF over a range of low temperatures
- Ongoing mechanistic interpretation
 - further evaluating the role of water...

Nitrocellulose Dissolution

- Previous investigations have shown that nitrocellulose dissolution in THF is a very dynamic process
 - initially, fibres swell and form a colourless gel
 - gelatinous nitrocellulose then disperses into solution
 - dn/dc stabilises to an equilibrium value of ~ 0.074 after ~
 7 days
 - fast-eluting 'pre-peaks' in cotton linter derived nitrocellulose disappear over a similar timescale
- This work formed the basis for development of a new GPC method for nitrocellulose analysis in THF

Validated Molecular Weight Determination

- RALLS GPC identified previously unseen chromatographic features
 - fast-eluting pre-peak a small but important fraction..?
- As sample dissolves, 'high molecular weight' pre-peak collapses

Nitrocellulose from Different Source Materials (RALLS Data)

Solution dn/dc and Intrinsic Viscosity Affects NC from Moulding Powder

- dn/dc and viscosity (η) plateau
- Constant dn/dc reached after 7 days
 - measured M_w critically dependent on dn/dc. RALLS M_w ∞ (dn/dc)²
- ⇒ Robust analytical technique for Arrhenius kinetics analysis

What Affects the Dissolution of Nitrocellulose?

- Does temperature affect the rate of dissolution?
- Does moisture content of solvent cause chemical degradation?
 - nitrocellulose known to be susceptible to hydrolytic chain

scission

 chain scission known to be very temperature dependent

Experimental Investigation

- The solution phase stability of nitrocellulose has been investigated under the following conditions:
 - thoroughly dried cotton nitrocellulose (11.7 12.2 % N)
 - stabilised THF (low level of BHT stabiliser)
 - 3 temperatures -
 - 4°, 35° and 45°C
 - 2 water contents within the THF
 - ~ 0 % (w/v) (distilled from Na and stored over NaH)
 - 1.0 % (w/v) (doped with 10 mgml⁻¹ H₂O)
- Individual, sealed vials withdrawn periodically over a 10 week timescale
 - analysed by triple detector GPC

Results in Dry THF...

Day 0 = 7 days dissolution

- Nitrocellulose exhibits excellent stability
 - no significant changes at 4 °C
 - slight degradation at 45 °C
 - mwt increase at 35 °C
 - this has been witnessed elsewhere! (NC and cellulose)

Stability in Dry THF...

- Fast-eluting RALLS pre-peak gradually reappears at the exclusion limit of the column
 - dn/dc remains constant at 0.075 (± 0.02)
 - aggregation or gellation?
 - conformational changes?
 - is the pre-peak physically large or of high mass?
- Mark-Houwink plot suggests that NC molecules become more conformationally rigid as a function of storage time
 - initial high mass fraction has markedly lower a value
 - chain branching or poor solvation?
 - on storage, M-H 'steepens' and 'straightens'

RALLS Data

Mark-Houwink

Results in Wetted THF...

Day 0 = 7 days dissolution

Nitrocellulose Stability in Water Wetted THF (~ 10mg/ml)

- Significant depolymerisation at all temperatures
 - as expected, very temperature dependent
 - mwt plateau observed
 - limit likely to be defined by initial water content

Stability in Wetted THF

- Again, fast-eluting RALLS pre-peak reappears
 - after 70 days, pre-peak is very large but still RALLS only
 - dn/dc remains constant at 0.074 (± 0.02)
 - main peak reduces in size dramatically
 - "aged" NC must become a less efficient light-scatterer
 - aggregation, gellation or conformational changes?
 - is pre-peak material physically large or of high mass?
- Mark-Houwink plot does suggest that NC molecules become very rigid as a function of storage time
 - does this account for the reduced RALLS peak size?
 - initial high mass fraction has markedly lower a value
 - on storage, M-H is much steeper and near linear (a ~ 1.1)

RALLS Data

Mark-Houwink

Conclusions

- o dn/dc does not shift from equilibrium value of ~ 0.074
- Nitrocellulose proves very stable in dry THF
- Under dry conditions, effect of depolymerisation is off-set by grow-in of 'aggregate'
 - mwt increase at 35 °C
- Addition of water causes significant hydrolytic depolymerisation
 - lots of low mwt material formed
 - pronounced 'aggregate' peak forms on storage
- Hydrolytic degradation very temperature sensitive