APPROVED FOR PUBLIC RELEASE

Ageing Protocol Development to Support the Qualification of Propellant Manufactured on Australia's Modernised Mulwala Facility

<u>Andrew Hart</u>, Joel Mortimer, Joel Huf, Chad Prior and Steve Odgers

Weapons and Combat Systems Division

7th International Nitrocellulose Symposium May 31 - June 1, 2016, Montreal, Canada

This presentation contains only UNCLASSIFIED information and is APPROVED FOR PUBLIC RELEASE

Background

- Modernised Mulwala Facility (MMF):
 - -SB propellant manufacturing capability
 - -Enhanced production capacity; improved environmental and OH&S characteristics
- Qualification guidelines:

-New propellant from new facility requires fundamental assessment of ageing characteristics and comparison with product previously demonstrated to be S3.

- Nature specific ageing protocol development:
 - -Required ageing conditions
 - -Identification of life-limiting propellant properties

Approach

Test Program: Comparison Propellants

Propellant	DOM	Туре	Stabiliser	NC Grade	Deterrent
AR1	Oct '10	SB	DPA	C: 13.2% N	DNT
AR3	Apr '05	SB	DPA	C: 13.2% N	DNT
L2	Jun '10	SB	EC	E: 12.0% N	-

Propellant	ns of AR1)			
Tropenant	Length	Diameter	Web	Perforations
AR1	1.0	1.0	1.0	1
AR3	3.4	2.3	2.6	1
L2	16.2	8.0	3.8	7

Test Program: Ageing

		Ageing Duration (days at 70°C		
Testing	Media	AR1	AR3	L2
Molecular level	TAM, PCA	0-135	0-84	0-197
Bulk properties	PCA	0-84	0-84	0-197
Gun performance	PCA	0-84	-	-

		Days at 80°C
Testing	Media	L2
Molecular level	20ml TAM	20, 40, 60, 80
Bulk properties	20ml TAM	40, 60, 80
Gun performance [^]	-	40, 80

- Wheaton vials (8 mL)
- ☑Pharmaglass vials (21 mL)
- PCA Bags

[^]IBHVG2 simulations

Ageing Media Equivalence: Weight Loss – AR1

AOP-48 guidance

Media	Wt loss%
4 ml TAM	<0.2
PCA bag	<0.1
Sealed ammo	<0.1

Ageing Media Equivalence: Weight Loss Summary

- AR1: PCA Bags
- AR3: PCA Bags
- * L2: PCA Bags
- ---- AOP48 UL

- AR1: 4ml TAM vial
- AR3: 4ml TAM vial
- + L2: 21ml TAM vial

Ageing Media Equivalence: Stabiliser loss – AR1

Propellant Stabiliser Depletion - Summary

▲ AR1: [DPA] PCA Bag • AR1: [DPA] 4ml TAM ∘ AR1: [ES] PCA Bag + AR1: [ES] 4ml TAM • AR3: [DPA] PCA Bag ▲ AR3: [DPA] 4ml TAM ∘ AR3: [ES] PCA Bag - AR3: [ES] 4ml TAM

ES=[DPA]+0.85 [n-no-DPA]

■ L2: [EC] 20ml TAM • L2: [EC] PCA Bag

DEF(AUST) 5 yr Chem Safe LifePropellantS/S0AR1 [ES]0.5AR3 [ES]0.5L2 [EC]0.6

9

Ageing Media Equivalence: Molecular Weight - AR1

Function Fit: Molecular weight reduction via monomer unit decomposition with chain recombination [Bohn, 1998]

Propellant MN Depletion - Summary

MN and Stabiliser Depletion - Kinetics

MN: Reduction via Monomer Unit Decomposition (k_{m1}) with Chain Recombination (k_{m2})

Monomer	[Primary Stabiliser] >0			[Pri	imary Stabiliser] =	0
Decomposition model	$k_{m1} x 10^{-5} (1/d)$	$k_{m2} \times 10^{-2} (1/d)$	R^2	$k_{m1} \times 10^{-5} (1/d)$	$k_{m2} x 10^{-2} (1/d)$	R^2
AR1 (70°C)	2.6	0.0	0.4435	2.6	0.0	0.7447
AR3 (70°C)	2.6	0.0	0.5842	9.1	0.0	0.8549
L2 (70°C)	1.5	0.0	0.8832			
L2 (80°C)	11.1	2.8	0.9398			

Stabiliser: nth order decomposition [AOP-48]

Stabilisar Danlation	n th	order model	
Stabiliser Depletion	$k \times 10^{-2} (1/d)$	n	R^2
AR1 (70°C)	3.9	0.7	0.9549
AR3 (70°C)	7.4	0.7	0.9668
L2 (70°C)	0.2	0.0	0.9236
L2 (80°C)	0.6	0.4	0.9822

Chem Stability AR3 < AR1 < L2

Bulk Effects: Mechanical Properties - L2

80°C Ageing

Age (days)	DISA (%)	MW (%)	PDI (%)
0	+4	0	0
40	+26	-58	-40
80	+70	-82	-50

Ageing Duration at 80°C

Unaged 40 days 80 days

Molecular Weight, MW (x10³)

Gun Performance: L2 (IBHVG2 modelling)

Effect of burn rate and fractured geometry

Age (days)	a (%)	n (%)	i (100 MPa), %	Quickness (%)	E content (%)
0	0	0	0	0	0
40	-14	+4	+3	+3	0
80	-30	+6	-7	-14	-4

Bulk Effects: Mechanical Properties - AR1 and AR3

AR1

Age (days)	DISA (%)	MW (%)	PDI (%)
0	+4	0	0
42	+1	-22	-11
85	+10	-54	-33

DISA_{deterred}= Fn(physical surface area

+ initial burn rate enhancement)

<u>AR3</u>

Age (days)	DISA (%)	MW (%)	PDI (%)
0	+14	0	0
42	+37	-53	-20
86	+78	-76	-52

Bulk Effects: AR1 Burn Rate

Age (days)	т் (16 MPa), %	r் (120 MPа), %	Pmax (%)	Quickness (%)
21	+8	+4	0	+4
42	+15	+1	0	0
85	+15	-4	-2	-8

Gun Performance: AR1 (inst. firing)

Age (days)	т் (16 MPa), %	DISA (%)	MW (%)	PDI (%)
0	0	+4	0	0
21	+8		-10	-4
42	+15	+1	-22	-11
63			-40	-24
85	+15	+10	-54	-33

Conclusions

Ageing Media:

- PCA bags offered improved sealing efficacy over TAM vials.
- Propellant ageing in PCA bags and 4 and 20ml TAM vials gave acceptable agreement whilst adequate sealing integrity was maintained.

Ageing Protocol:

- For all propellants represented, <u>at the ageing temperatures considered</u>, functional performance rather than safe-life will be life-limiting.
- For the AR propellants, a 55°C ageing temperature would be more appropriate owing to DNT-loss at the 70°C condition.

Propellant	5yr Chem Safe Life	Functional Life	Life Limiting Factor
AR1	>135d at 70°C equiv.	63d at 70°C equiv.	Deterrent induced burn rate changes.
AR3	>84d at 70°C equiv.	42d at 70°C equiv.	Deterrent induced burn rate changes and (possibly) loss in structural integrity.
L2	~60d at 80°C equiv.	<40d at 80°C equiv.	Loss in structural integrity.

APPROVED FOR PUBLIC RELEASE

Ageing Protocol Development to Support the Qualification of Propellant Manufactured on Australia's Modernised Mulwala Facility

Andrew Hart, Joel Mortimer, Joel Huf, Chad Prior and Steve Odgers

corresponding author: andrew.hart@dsto.defence.gov.au

Weapons and Combat Systems Division DST Group - Edinburgh

This presentation contains only UNCLASSIFIED information and is APPROVED FOR PUBLIC RELEASE

