



# Thermal and Mechanical Hazards of Nitrocellulose and its Mixture with Nitroglycerin

S. Singh<sup>1</sup>, Q. Kwok<sup>1</sup>, R. Turcotte<sup>1</sup> and M. Paquet<sup>2</sup>

<sup>1</sup>Canadian Explosives Research Laboratory, Natural Resources Canada

<sup>2</sup>General Dynamics Ordnance and Tactical Systems - Canada Valleyfield

7<sup>th</sup> International Nitrocellulose Symposium, Montréal, Canada, May 31 – June 1, 2016







### **Outline**

#### Introduction

#### Thermal Study

Accelerating Rate Calorimetry (ARC)

#### Quantification of Mechanical Hazards

- Friction
- Impact

#### Summary

Acknowledgement: Special thanks to Mr. Ian Levac from GD-OTS Canada Valleyfield for the preparation and the shipping of the samples used in this work







#### Introduction

All modes of ignition of energetic materials are essentially thermal in nature:

- Fast (millisecond) ignitions are intuitively familiar:
  - Striking a match
  - Lighting a gas BBQ
  - Using paper (kindling) to start a fire
- Slow ignition events (days, years) are less intuitive:
  - Most energetic materials are self-heating materials and therefore can be made to spontaneously ignite
- Mechanical ignition hazards
  - instantaneous friction and/or impact stimuli invoking an unintended reaction (evolution of gas, sound, light...)







#### Introduction

Literature isothermal studies attempt prediction of safe storage periods for NC and NC/NG systems

- **Slow ignition** (T. Kotoyori 2005):
  - → Autocatalytic induction times from 1 to 10 days (T<sub>iso</sub>: 73 to 91°C)
- Fast ignition (A.S. Shteinberg 2006):
  - →Ignition times from 1 to 15 seconds (T<sub>iso</sub>: 212 to 242°C)

Mechanical sensitivity testing addresses probability of initiation (*lp*)

- Ip = probability of local ignition
- Proper test to simulate process events (hazards)
- Unbiased scheme to assign "yes/no" reaction to test
- Appropriate statistical analysis method
- Is there an acceptable level of risk?







## Samples

#### NC

| Grade     | N Content (mass %) |
|-----------|--------------------|
| C; Type I | 13.15 ± 0.05 %     |

- "as rec'd" 25% water-wet
  - Dried in desiccator to constant mass. Stored and used from desiccator for duration of study



#### NC/NG (70/30)

- Prep: GD-OTS Canada Valleyfield
- NC wetted with alcohol/acetone
- Acetone desensitized NG added
- Mixed to a granular paste with suitable viscosity
- Transferred onto stainless steel plate and left >48 h to evaporate at room temperature to a given residual solvent
- Material peeled off and broken into small pieces



- "as rec'd" dried under vacuum
  - Stored in sealed charge dissipative vials





## **Thermal Study - ARC**





10 mL spherical Ti vessel



1 mL tube Tivessel

Canadä



GENERAL DYNAMICS
Ordnance and Tactical Systems

Ressources naturelles

Canada

## ARC (Isothermal)







Natural Resources

Canada

GENERAL DYNAMICS

Ordnance and Tactical Systems

## ARC (Isothermal)









### Literature + Isothermal ARC Data









## **Thermal Study - Conclusions**

- Empirical fit can be used as a basis to derive NC shelflives from iterative calculations
  - More data would be required at lower temperatures (micro-calorimetry) to improve shelf-life predictions
  - More data would be required to link the fast ignition data to the slow decomposition regime (10 s to 30 min)
  - Therefore in the present work, attempts will be made to develop a pyrolysis technique to obtain such data
- The slow decomposition behaviour of the NC/NG mixture and pure NC appears very similar
- ➤ The NC/NG mixture shows similar induction at temperatures ≈10°C lower than pure NC







### **Mechanical Hazard: Friction**





ABL/ICI → Hazards quantification via statistical data treatment of *measured* parameters such as contact geometry, applied pressure, plate velocity, detection of induced reactions (i.e., monitor emissions)...

Correlation study on many parameters has shown that  $D = Pa \mid <v>2$  gives the best overall correlation for a wide range of EMs [Pa = Apparent Pressure, I = Contact Length (in the direction of motion), <v> = Average Relative Velocity]







## Friction (ABL/ICI)







### Friction: Gas evolution











### **Hazards Quantification - Friction**











## **Hazards Quantification - Impact**









## Hazards Quantification - Impact











### **Mechanical Hazards-Conclusions**

- Small scale friction and impact tests can be instrumented and calibrated to obtain realistic evaluation of *lp* for NC and NC/NG
  - Friction
    - Compared to NC, the NC/NG mixture has lower thresholds of CO/NOx production, corresponding to the onset of combustion reactions with a potential to propagate
    - P<sub>a</sub>I<v>2 dose parameter is "unphysical". [Ignition of the NC and NC/NG in this test is expected to be thermal in origin so "friction temperature" a better dose parameter]
  - Impact
    - Compared to NC, the NC/NG mixture demonstrates higher probability to initiate given the same dose
- What is an acceptable level of risk? These Ip data are useful for insertion into risk assessment models.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016





