QinetiQ

Bacterial Cellulose - Analysis and Nitration

Eamon Colclough, Rob Endsor, Javid Hamid, <u>Simon Torry</u>

1st Jun 2016

QINETIQ/16/01844

Introduction

 Nitrocellulose (NC) is a key ingredient in energetic material formulations for rocket and gun propellants, pyrotechnics and explosives

NC is made by nitration of cellulose

- cellulose produced in plants is prone to natural variations due to primary source (cotton or wood), local climate, available nutrients and seasonal changes
- variations result in inconsistent nitrocellulose properties, which can cause severe problems in munitions manufacture, reduced life and in-service failures

Objective

 develop a consistent form of NC that is reproducible over many years, without reliance on uncertain supply chains and the variance in naturally produced cellulose

Investigated solution

- bacterial cellulose consistent, long nano sized fibrils
- potentially high levels of material consistency with security and continuity of supply

Bacterial Cellulose

Supplier AV1

- food additive
- contained co-agents (ca. 40% Xanthan gum and Sodium carboxymethyl cellulose) to aid cellulose recovery from fermentation media
- 1% in suspension in water activated with a high shear mixer
- heated with hydrogen peroxide overnight at 50°C, "filtered"

Supplier AV2

Wet cake (~15% cellulose stabilised with 0.1% sorbic acid), development material

Supplier BV1

- biomedical applications
- freeze dried (water) cellulose sheet
- need to be cut/macerated prior to nitration

Supplier BV2

- "fibrous" form
- freeze dried (ethanol) cellulose sheet

Bacterial Cellulose Analysis

• FTIR

 without calibration, infrared spectroscopy could not distinguish between the cellulose and co-agent residue

NMR

- liquid state NMR
- cellulose insoluble in most solvents due to high molecular weight, strong inter/intramolecular hydrogen bonds, partially crystalline
- identified a number of solvents/methods

Dissolution

Solvent	AV1 Dissolution Observations
LiCl/Dimethylacetamide	Little or no dissolution
LiCl/N-Methyl-2-Pyrrolidinone + steaming	Little or no dissolution
1-Ethyl-3-methylimidazolium acetate ionic liquid	Soluble (up to 5%) ¹³ C peaks broad at 35°C Partial degradation of cellulose at 75°C. Impurity signal hidden under solvent peak.
Cadoxen (deuterated water, ethylenediamine and cadmium oxide, NaOD)	Soluble (up to 4%) ¹ H NMR too broad ¹³ C typically 24 to 60 hours Observed co-agent signals at 165-185ppm

Bacterial Cellulose NMR

- Cellulose AV1 soluble, BV1, BV2 swelled
 - Added NaOH:water
 (0.035:1): aided
 dissolution BV1
 - BV2 gel like
- ¹³C NMR indicated xanthan gum and sodium carboxymethyl cellulose absent
- BV2 cellulose signal broader than the AV1 indicating lower molecular motion

NC Analysis - NMR

- Degree of nitration (S) and %N of nitrocellulose calculated from the areas ¹³C NMR peaks as per below equations
 - dissolved in DMSO at 60°C
 - nitrogen content can only be calculated if the nitrocellulose's NMR peaks are resolvable (integration or deconvolution)
 - only quantitative for species with small T1 relaxation time constants

$$S = 3A_B + 2A_C + 2A_D + A_{A2}$$

$$A_{A2} = A_A - A_D - A_K$$

$$%N = \frac{14S}{162.1 + 45S} \cdot 100$$

BNC Analysis - NMR

- Insoluble behaviour of cellulose BV1 and BV2 carried through to nitrated material
 - very broad peaks not amenable to ¹³C NMR %N measurement
 - deconvolution required for some nitrated materials
 - investigated other solvents/additives: caused NC degradation

BNC Analysis – Ferrous Ion Titration (FIT)

Redox electrode in an autotitrator, conc. sulphuric digestion

- digestion and titration temperature tightly controlled to 5°C and always below 10°C
- higher temperatures undermeasured nitrogen content
- cotton NC dissolved within 15mins at 5°C
 - measured N% 12.18±0.08 (NMR 12.2%)

BNC took considerably longer to dissolve

- up to 2.5 hours at 6.6°C (~ 4 to 6 x longer than normal NC)
- FIT values lower than NMR results

 Parametric nitration studies performed on cellulose AV2 (varying, pre-processing method, time, temperature, nitrating mixture and water content)

Pre-processing methods:

- A. 89g, freeze-dried, stirred in ethanol to remove the sorbic acid, filtered, dried under vacuum and ground using a lab mill
- B. 89g, freeze dried, ground using a lab mill, stirred in ethanol, filtered, dried under vacuum
- C. Material from A and B combined
- D. 153g freeze dried, stirred in ethanol, dried under vacuum and ground using a lab mill
- E. As per D, using 173g of wet cellulose

Expt.No./	Nitra	ting Mixture	e / %	Mass NC	Nitrogen	
method	H ₂ SO ₄	HNO ₃	H ₂ O	(g)	Content (%N)	Yield (%)
096 (A)	73.2	25.3	1.5	3.13	13.19	89.7
097 (B)	73.2	25.3	1.5	3.05	13.29	87.3
100 (A)	65.9	22.8	11.3	3.11	13.40	87.6
103 (C)	64.0	22.2	13.8	3.00	13.26	85.6
105 (D)	63.1	21.9	15.0	2.94	12.97	85.8
107 (D)	62.7	21.7	15.6	2.98	12.86	86.5
120 (D)	62.5	21.6	15.9	2.77	12.28	83.8
101 (B)	62.2	21.6	16.2	2.77	12.20	83.4

Results of the nitration of bacterial cellulose AV2 with varying water content (20°C, 1Hr)

Expt. No.	Nitrating Mixture	Time (min)	Temperature (°C)	Mass NC (g)	Nitrogen Content (%N)	Yield (%)
108 (D)	15.6% water	30	20	2.88	12.65	85.4
107 (D)	15.6% water	60	20	2.98	12.86	86.5
109 (D)	15.6% water	120	20	2.74	12.92	79.7
120 (D)	15.9% water	60	20	2.77	12.28	83.8
121 (D)	15.9% water	120	20	2.97	12.94	86.4
122 (D)	15.9% water	180	20	2.80	12.77	82.5
124 (D)	15.9% water	60	30	2.77	12.70	81.9
126 (D)	15.9% water	120	30	2.86	12.74	84.4
128 (D)	15.9% water	180	30	2.95	13.06	85.5
125 (D)	15.9% water	60	10	2.61	12.30	78.8
127 (D)	15.9% water	120	10	2.76	12.70	81.6
129 (E)	15.9% water	180	10	2.88	12.95	84.0

Results of the nitration of bacterial cellulose AV2 with varying time and temperature

- Three nitrations were carried out on 10g scale using optimised conditions (20°C, 2 Hrs)
 - recovered mass and nitrogen content were consistent across the three samples
 - the nitrogen content above the desired range (12.4% 12.8%)
 - slightly higher than that for material produced under similar conditions on a smaller scale (2g cellulose, 15.9% water, 12.9% N)

Reference	Mass recovered /g	Nitrogen content /%
135	15.1	13.2
136	14.8	13.2
137	14.8	13.1

Conclusions

- Nitration of BNC: %N is sensitive to
 - time, temperature
 - but most sensitive to water content in the nitrating mixture
- Nitrogen contents measured by titration were lower than NMR measurements of bacterial NC
- NC from the latest batch of "wet cake" from Supplier A (AV2) gave the NC with the most potential
- The nitration process was scaled up the %N for 10g scale reactions was different to that measured for the 2g scale reactions
- Material made on 10g scale has %N that can be potentially exploited in gun propellants
- Next steps would be to engage a large scale commercial supplier of bacterial cellulose

Acknowledgments

• The authors thank the Defence Science and Technology Laboratory (Dstl) through the Weapons Science and Technology Centre (WSTC) for funding this work

Any Questions?

www.QinetiQ.com

youtube.com /user/QinetiQGroup

linkedin.com

/company/ginetig 2

FOLLOW US ON:

twitter.com /QinetiQ

facebook.com /qinetiqgroup