

Nitrocellulose Degrees of Freedom

Chemico-Physical Effects on Mechanical Processing

7th NC Symposium, Canada, 31st May – 1st June 2016

n.mai@cranfield.ac.uk matthew.parker@cranfield.ac.uk

Nitrocellulose Degrees of Freedom

- Introduction
- Fibre Properties
- Polymeric Properties
- Swelling and Gelling
- Conclusions and Future Work

Nitrocellulose Degrees of Freedom

Cellulose source

Fibre technology: nano/micro/macro-scale structure and crystallinity of cellulose/NC Pre nitration treatments (flock vs sheet, bleaching, cutting, thrashing)

Nitrocellulose manufacture

Total N%, N distribution Molecular Mass Distribution, dispersity Fibre length distribution Water/solvent retention, Viscosity

Propellant manufacture

Gelation, solubility, bonding
Chemical stability
Ballistics
Chemical stability
Mechanical properties

Variation in N-content affects NC crystallinity > different polarisation colours

N-Content (%N)	Colour	
11.0	Grey white	
11.5	White	
11.7	Yellow white	
12.0	Yellow	
12.2	Orange	
12.3	Red orange	
12.4	Red	
12.5	Violet	
12.6	Blue	
12.8	Blue white	
13.1	Pale grey	
13.2	Grey	
13.4	White	
13.5	Intense white	

- Polarisation colours correlate with titrimetric values
- Nitration of fibres appears to improve at higher N-content

Fibre Length and Dispersity

- Fibre length varies with nitrogen content;
 - Guangrao linter and Tembec wood derived samples increase in fibre length
 - Temmings and Buckeye derived samples decrease

11.7 N% 96 μ m $\Theta_{fib} = 1.7$

12. 2 N% 127 μ m $\Theta_{fib} = 1.4$

$$\label{eq:local_local_local_local} \begin{split} \textbf{12.6 N\%} \\ \textbf{244 } \mu m \\ \boldsymbol{\theta}_{fib} = \textbf{1.3} \end{split}$$

- The dispersity of fibre length (Đ_{fib}) decreases in all cases with increasing nitrogen content
 - Improved fibre length homogeneity in high nitration

Fibre Length and Dispersity

A, B, C, D, E

Fibre Elutriation

A = 11.7 %; ●= 12.2 %; = 12.6 %; ■ = 12.7 % **A**, **B**, **C**, **D**, **E**

*Paquet, M. & Cossette, N. Measuring the Quality of Fiberization of NC. in 5th International NC Symposium (2012)

Fibre Elutriation

A = 11.7 %; ●= 12.2 %; = 12.6 %; ■ = 12.7 % **A**, **B**, **C**, **D**, **E**

*Paquet, M. & Cossette, N. Measuring the Quality of Fiberization of NC. in 5th International NC Symposium (2012)

Fibre Elutriation

A = 11.7 %; ●= 12.2 %; = 12.6 %; ■ = 12.7 % **A**, **B**, **C**, **D**, **E**

*Paquet, M. & Cossette, N. Measuring the Quality of Fiberization of NC. in 5th International NC Symposium (2012)

Diffusion and Swelling

- Rate and uniformity of swelling = critical for determining cure conditions and properties of the propellant. Difficult to predict
- Swelling of NC fibres: Sorption of solvents/plasticisers into NC fibre structure → change of volume and physical properties
- Diffusion and swelling mechanisms:
 - Case I swelling: swelling occurring after an initial diffusion phase
 - Case II swelling: diffusion and swelling occurring simultaneously
 - Case III swelling: swelling occurring into material which has already undergone at least one sorption-desorption cycle

- Swelling occurs during:
 - Initial step of manufacture of casting powder → NC fibres swollen in solvents (Case II swelling)
 - Addition of casting solvent to casting powder → NC has already been processed (Case III swelling)

- In initial casting powder processing, raw NC exists in the form of fibres.
- Swelling previously studied on cast NC films → not representative
- NC fibres pressed into discs (2KN), dried and immerged in excess of solvent/plasticisers @ 20°C
- Changes in disc thickness over time measured with TMA

NC fibres swelling Ethanol

NC swelling Ethanol-Acetone

Conclusions and Future work

- Analysis of a number of NC key parameters with STANAG methods and novel techniques
 - Fibre length and distribution varies between supplier
 - Viscosity varies significantly at high N% while agglomerate/aggregate content varies significantly at low N%
- Early stage of swelling shows different kinetics which alters with
 - Nature of solvent
 - Temperature
 - Solvent ratio…
- Understanding the NC swelling kinetic will help understand the initial step in the CDBP process

Acknowledgements

- UK MoD Weapons Science and Technology Centre
- ROXEL (UK Rocket Motors) Ltd
 - Bob Wall
- Cranfield University

Chemistry, Material Science and Physics applied to Explosive, Propellants, Pyrotechnics

Polymers and Binders; Chemical Synthesis; Crystallography and Crystallinity; Forensic Science; Characterisation and Sensors; Ageing and Stability; Detonics; Combustion; Safety; Explosive Formulation and Manufacturing; Environmental Science.

Fibre Length and Dispersity

Manufacturer	N%	Fib _n	Fib _w	\mathbf{b}_{fib}
Α	11.7	96.5	159.9	1.7
A	12.2	128.1	182.8	1.4
Α	12.6	243.1	309.3	1.3
В	12.2	205.0	327.3	1.6
В	12.6	164.7	216.1	1.3
С	12.2	134.0	185.6	1.4
С	12.6	241.3	311.2	1.3
D	12.2	332.8	426.1	1.3
D	12.7	203.0	253.3	1.2
E	12.7	241.6	301.9	1.2

 $Fib_n = \Sigma(N_i Fib_i) / \Sigma N_i$

 $Fib_w = \Sigma(N_i Fib_i^2) / \Sigma(N_i Fib_i)$

 $\mathcal{D}_{fib} = Fib_{w} / Fib_{n}$

 Fib_n = Number average fibre length

Fib_w = Weighted average fibre length

N_i = Number of fibres of specific length

Fib_i = Fibre length of specific fibre

 θ_{fib} = Fibre length dispersity