Photodegradation of Nitrocellulose Stabilised with Diphenyl amine

Dr Monir Moniruzzaman & Dr Nathalie Mai

 7^{th} NC Symposium, Canada, 31^{st} May -1^{st} June 2016

Photodegradation of NC

Research Background

Cranfield

- Exposure of NC to sunlight results in loss of colour and change of physical properties¹
- More recent work on UV induced photodegradation of NC showed its effect on crystallinity²
 - Longer wavelength UV suggests no chain scission
 - Shorter wavelength shows chain scission

- 1. F. D. Miles, Cellulose Nitrate: The physical chemistry of nitrocellulose, its formation and use, Interscience Publishers, New York, 1955, 253.
- 2. Moniruzzaman et, Polym. Degrad. Stab. 96, 2011, 929.

- Photodegradation of nitrocellulose (NC)
 - Effect of UV irradiation

- Mechanical properties change by light
- Rate of stabiliser depletion by UV and visible light

Experimental

Preparation of NC Films

- NC (12.6% N)
 - unstabilised
 - stabilised with 5% DPA
- MEK (5% w/v) solution cast (2 ml) on microscope slides
- Dried at ambient temperature for 3 days and subsequently under vacuum at 40°C for 3 days
- Covered with petri dish to slow down the evaporation of solvent in order to achieve good quality films

Experimental

UV/Vis Irradiation of Films

Novacure® 2100 light source

- UV filter (320-390 nm)
 - Intensity: 500 mW/cm²
- Visible filter (400-500 nm)
 - Intensity: 3000 mW/cm²
- Irradiation time:
 - 15, 30, 45, 60 min

Effect of UV /Vis Irradiation - Colour

- No colour change observed for unstabilised NC when exposed to UV or Vis irradiation
- Colour change observed for DPA stabilised NC when exposed to UV or Vis irradiation

Effect of UV /Vis Irradiation -Solubility

 DPA stabilised NC films were partially soluble after Irradiation

UV irradiation	Vis irradiation
16% residue left after filtration	6% residue left after filtration

 Insoluble residue was highly coloured and tougher for Vis samples suggesting possible cross-linking of NC

30 mins UV irradiated films after 24h in THF

30 mins irradiated residue from MEK

Effect of UV /Vis Irradiation-MMD-Unstabilised

Upon UV irradiation of NC, M_w decreased 12% confirming polymer

chain scission

 Upon visible irradiation, MMD showed no remarkable change indicating that visible irradiation neither decomposes nitrate ester nor causes chain scission

Effect of UV/Vis Irradiation –MMD-Stabilised

- M_w of DPA stabilised NC increased as a function of irradiation time
- Visible irradiation polydispersity from 2.26 to 3.7 suggesting crosslinking
- Samples not fully soluble
 - Need to repeat with triple detection
 - small shoulder observed in the higher mass region → higher Mw chain

UV irradiation (1h)	Vis irradiation (1h)	
+ 19% Mw	+28% Mw	

Effect of UV/Vis Irradiation –MMD-Stabilised

Cranfield

FTTR Analysis of Photo-crosslinked Unstabilised and DPA Stabilised NC

Effect of Vis Irradiation on Mechanical Properties

- Stiffness increase upon (45 min)
 Vis irradiation confirms toughening of NC
- Hardness remains unaffected by Vis irradiation
- Increase of creep at load confirms more plastic behaviour of NC after irradiation

Sample History	Pristine	Visible
Stiffness (GPa)	4.2	4.6
Stiffness change (%)	0	8
Hardness (Vicker)	20.4	20.5
Hardness change (%)	0	0
Creep at load held constant (%)	7.04	7.76
Creep at load held constant (%)	0	10

Stabiliser loss (DPA) due to UV and Vis Irradiation

Unstabilsed NC

- <u>UV irradiated</u> 12% decrease of M_w (chain scission)
- Visible irradiated does not affect the M_w

DPA stabilised NC

- <u>UV irradiated</u> 19% increase of $M_{\rm w}$ (chain scission in parallel to nitrate ester decomposition with UV indicating an increase of $M_{\rm w}$)
- Visible irradiated 28% increase in M_w high crosslinking through OH groups confirmed by M_w rise as well as absence of -OH str in IR spectra

Chemistry, Material Science and Physics applied to Explosives, Propellants, Pyrotechnics

Polymers and Binders; Chemical Synthesis; Crystallography and Crystallinity; Forensic Science; Characterisation and Sensors; Ageing and Stability; Detonics; Combustion; Safety; Explosive Formulation and Manufacturing; Environmental Science.