

7 NITROCELLULOSE 2016

- Process of treating
- Results from operation
- Operational problems

Radim Staněk

Treatment of wastewater from nitrocellulose production

Quality and Amount of Wastewater

mg/L	рН	N-NO ₃ -	SO ₄ ²⁻	COD	TSS
Wastewater	1 - 2	100 - 400	1,000 – 2,000	50 - 100	0 - 30

- Volume of wastewater is about 2,000,000 m³/year
- Temperature from 15 °C to 35°C
- It is necessary to adjust pH and remove nitrates

Princip of treatment

Neutralization by sodium hydroxide

$$HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$$

 $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

Denitrification - bacteria use nitrate as electron-acceptor in the respiration chain instead of oxygen under anaerobic conditions:

$$12 \text{ NO}_3^- + 5 \text{ C}_2 \text{H}_5 \text{OH} \rightarrow 6 \text{ N}_2 + 10 \text{ CO}_2 + 12 \text{ OH}^- + 9 \text{ H}_2 \text{O}$$

- 2.86 g COD are needed per gram of nitrate-nitrogen
- pH is increasing because hydroxide ions are produced

Complete denitrification pathway:

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Process flow scheme

Neutralization

Denitrification

Degassing

Separation of Sludge

Tertiary Treatment

Sludge Management

Hydraulic and mass loading

Volume of wastewater	
5200 m ³ /d	60 L/s (40 – 100 L/s)

Acidity		NaOH		ratio
kmol/d	m ³ 50%/d	t 100%/d	kmol/d	mol NaOH/mol acidity
176	8,0	6,0	150	0,80

20% of acidity is neutralized by hydroxide ions produced in denitrification.

Δ N-NO $_3^-$	ethanol	Total consumed COD		ratio
t/d	m^3/d	t/d	PE	t COD/t N
1.1	2.4	3.8	32,000	3.6

Technological Parameters

Sludge concentration (MLSS)	2 - 3	g/L
Organic part of sludge (VMLSS)	80	%
Excess sludge production	0,9	T SS/day
Return sludge flow	50	L/s
Hydraulic retention time	6 – 8	hours
Sludge retention time	8 - 12	days

- Concentration of sludge is slightly lower then in classical activated sludge system.
- The organic part of the sludge is larger due to absence of suspended solids in the influent.

Wastewater quality

mg/L	N-NO ₃ -	N-NH ₄ ⁺	COD	BOD	TSS	рН
Influent	240	0.4	100	25	20	1.5
Effluent	10	0.2	50	10	30	6 - 8

- Removal of nitrates and adjustment of pH
- High operation costs

Operational problems

1) Severe inhibition of denitrification process

- Loss of ability to reduce nitrates
- Stopping the wastewater flow into WWTP
- Inhibitions lasted 8 48 hours

2) Poor sedimentation properties of sludge

- Problems with separation of the sludge in the settling tank
- Restriction of wastewater volume

Inhibition of denitrification

Nitrous gases above the surface of the denitrification reactor.

Possible causation: Nitric oxide

- Denitrification intermediate
- Free radical
- Toxic to bacteria

Theory of formation of nitric oxide

High nitrates loading, low pH → accumulation of NO

$$NO_3^- >>> NO_2^- >>> NO (aq) > N_2O > N_2$$

After reaching solubility limit

$$NO (aq) \rightarrow NO (g)$$

$$NO(g) + \frac{1}{2}O_2 \rightarrow NO_2(g)$$

Poor sedimentation properties of sludge

Zoogloeal bulking = excessive amount of extracellular polymers. Polymers retain large amount of water and prevent the sludge flocs approaching to each other closely.

- slow sedimentation velocity
- poor dewatering

Normal sludge

Zoogloeal sludge

After 30 minutes

After 2 hours

Solution attempts

- Dosing of weighting material (milled limestone)
- Dosing of coagulant (Ferric Sulphate) and flocculant
- Partial change of substrate (Brenntaplus VP1)
- Dosing of micronutrients (Vithane)
- Decrease of sludge concentration in reactor

poor sedimentation vs. inhibition

Thank you for your attention

