

Monique van Hulst

innovation for life

IMPORTANCE DETERMINATION OF %N

- Properties
- Nitrocellulose
- Manufacturing
- Propellant

Ageing

- Stabilizer depletion in propellants
- NC degradation
- Etc.

ANALYTICAL TECHNIQUES

- Size-exclusion Chromatography (Hydrodynamic volume, "Mw"- "Chain length")
- ▶ Elemental Analysis (total C, H and N with adjustment also O)
- Titrations (nitrogen content)
- Ultra High Pressure Liquid Chromatography (Patent US2013/0000382 A1)
- X-Ray Diffraction (Crystallinity)
- Near infrared (NO₂)
- > Etc.

CRYSTALLINITY

*Data presented at the 6th Nitrocellulose workshop (2014)

Sample	Holder	Crystallinity fitted (TOPAS) 1 crystalline / 3 crystalline signals	
Cellulose	Side-loader	54%	
Nitrocellulose-A	Side-loader	7%	14%
Nitrocellulose-B	Side-loader	8%	10%

is depending sample preparation, choice of fitting method and choice of crystalline/amorphous signals.

ELEMENTAL ANALYSES – NITROGEN CONTENT IN NITROCELLULOSE

- Based on the combustion of the material resulting in %C, %H and %N (optional is %O)
- Percentage based on sample mass
- Mass is influenced by all impurities incl. water content
- Influenced by other Nitrogen containing impurities
- Suggestion: to eliminate the influence of weight by using ratio C/N of nitrocellulose. However not the influence of impurities containing carbon and/or nitrogen.

CHROMATOGRAPHY OF NITROCELLULOSE

SIZE EXCLUSION CHROMATOGRAPHY

- Based on hydrodynamic volume:
 - Depending on solvent
 - Monomer type (and distribution)

Indirect measure, due to using PS standards for SEC- calibration and analysing "random" copolymers.

$$\begin{array}{c} \text{OH} \\ \text{OH} \\$$

#25

%N 13.5

HPLC NITROCELLULOSE Pater Combs

#20

%N 13.7

 $T_r = 2.128$

m AU

400

300

2000

100

-100

United States Patent Application Publication

(10) Pub. No.: US 2013/0000382 A1

(43) Pub. Date:

Jan. 3, 2013

(US)

Assignee: ALLIANT TECHSYSTEMS, INC.,

Minneapolis, MN (US)

Cellulose "Mw" #20: 1.45*106 Da

#25: 1.36*10⁶ Da

SEC shows similar PDI-values

400

300

200

100

VARIOUS MODES OF LC FOR POLYMERS

COPOLYMER ANALYSIS (LC X SEC)

What about nitrocellulose, which contains monomer A, B, C and D?

ION CHROMATOGRAPHY

%N IN NC IN PROPELLANT MATRIX BY ION CHROMATOGRAPHY

a simple ester hydrolysis producing nitrate

3 [NO₃-]

formation of carbonyl groups at the substitution site, resulting in the formation of nitrite

$$3 [NO_2^-] + H_2O$$

M. López-López et al., Analytica Chimica Acta 685 (2011) 196-203

NC 1 - Recovery: 90.2% - 110.9%

NC 2 - Recovery: 93.5% - 119.1%

EXTRACTION OF PROPELLANT AND GRAVIMETRIC NC CONCENTRATION

Determination of nitrogen content of Nitrocellulose by chromatography_ Copyright @ TNO

HYDROLYSIS

→ 150 °C for 1/2 hour

NC 1

Temperature of Hydrolysis (°C)

<u>EA NC 1:</u>
11.69 (2008)
11.85 (2009)
11.71 (2015)

%Nitrogen = based concentration from NO₂ + NO₃

Use button 'Pictures' to change background
Text-only start sheets can be added using
'New slide/Nieuwe dia'

PROPELLANTS

PROPELLANTS

- By elemental analyse N, H and C
 - Nitrocellulose
 - Nitroglycerin
 - Stabilizer
 - Plasticizer

Etc. (more C, H and N)

Possible by fitting:

With increasing # of components and/or similar ratio CHN; decreasing accuracy

IC ANALYSIS OF PROPELLANTS

Samples

- Propellant without stabilizer:
 - 97 wt% NC 13.2 N%
 - 3% plasticizer
- Propellant with stabilizer:
 - 94 wt% NC 13.2 N%
 - 3% stabilizer
 - 3% plasticizer

Triple base- N% of NC:

- EA — 19.3 %N

- EA-C/N — 16.0 %N

- IC (SUM) - 6.8 %N

 $- IC-NO_2/NO_3 - 12.4 \%N$

- Info NC used - 12.5 %N

Result:

Average 13.20 %N; STDV. 0.05

Average 13.17 %N; STDV. 0.11

Determination of nitrogen content of Nitrocellulose by chromatography_ Copyright @ TNO

CONCLUSIONS

- > Working with ratio NO₂/NO₃ shows less variations than total %N
 - No influence on the sample mass variation
- Separation NC from other components in propellant is needed
- The analyses of propellant looks promising especially dealing with triple base with stabilizer and plasticizer content. Calibration ratio NO₂/NO₃ with NC-samples seems possible (%N by Elemental analysis). IC calibration with NO₂ and NO₃ ion standards
- Further research needed to understand nitrocellulose and the dependence of the ratio of the nitrite / nitrate formation

CONTACT INFORMATION

Monique van Hulst <u>monique.vanhulst@tno.nl</u>

Wim de Klerk <u>wim.deklerk@tno.nl</u>

