

Whole Life Assessment of Nitrocellulose in Double Base Propellants

Nathalie Mai Michael Isherwood Phil Gill

Contents

- Introduction
- Aged DB rocket propellant analysis
 - GPC
 - HPLC
- Aged DB gun propellant analysis
 - GPC
 - microhardness
- Conclusion and future work

The problem

Whole life assessment of NC in propellants

- Processing parameter during manufacture
 - viscosity...
- Chemical ageing
 - stabiliser depletion
 - NC molar mass changes
- Mechanical ageing
 - hardness...

GPC method described in STANAG 4178

		RSD (Mn)	RSD (Mw)
	5 measurements	2.8%	2.8%
RSD 10-100% in the past			

Comparable to other analytical techniques

Validation of the GPC method

- Broad distributed PS standard NBS 706a
- Certified by NIST (previously NBS)
- Injected in triplicate with every set of propellant samples

Accuracy and precision of the GPC method

- 14 measurements of NBS 706a Mw in triplicate (5 month)
- Accuracy:
 - $\text{Mw} = 2.85 \pm 0.23 \ 10^5 \text{ g/mol ($\pm 8\%)}$ certified by NIST
- Precision: RSD < 0.9%

The aim

- To assess the life of DB propellants by:
 - transferring the GPC method to formulated NC product (aged DBP)
 - measuring the kinetic parameters (k, E_a)
- To perform mechanical testing and correlate results to average molar mass of NC

Propellants used

Generic DB rocket propellant

- NG, NC, p-NMA and 2-NDPA
- supplied by Roxel (UK Rocket Motors) Ltd

DB gun propellant, 20 mm (Phalanx)

- NC, NG, DPA
- donated by DOSG MoD
- in addition naturally aged propellant (15 y old) was supplied

Ageing (AOP-48)

2g for DB rocket propellant / 5g for DB gun propellant were

- pre-conditioned
 - 60-70% RH level, 48h, 25°C
- heat sealed in polymer coated aluminium bags
- aged at
 - 30, 40, 50, 60°C (DB rocket propellant)
 - 70, 80°C (DB gun propellant

GPC sample preparation

- Simple, quick and easy with no pre-conditioning
- 24h in solution
- Automatic injection in 5 replicates

Contents

- Introduction
- Aged DB rocket propellant analysis
 - GPC
 - HPLC
- Aged DB gun propellant analysis
 - GPC
 - Microhardness
- Conclusion and future work

Mw changes for artificially aged DB rocket propellant

Mn follows the same trend

Arrhenius plot for NC decomposition

Decomposition of NC at T<60°C dominated by low Ea process.

NC decomposition

NC decomposes following 2 pathways:

- Thermolysis of CO-NO₂ group (producing 2 radicals) Ea = 160-170 kJ/mol
- Hydrolysis of CO-NO₂ group (producing nitric acid) Ea = 100 kJ/mol
 - Our result is consistent with hydrolysis process

Ref: M. A. Bohn, J. of Thermal Analysis and Calorimetry, 2001, 65,103

Depletion of stabilisers at 60°C

2-NDPA depletion

Arrhenius plot for 2-NDPA depletion

P-NMA depletion

Arrhenius plot for p-NMA depletion

Summary

- Mw and Mn decrease with ageing time
- Low Ea (Mw) consistent with hydrolysis
- p-NMA is consumed quicker than 2-NDPA with lower Ea
- 2 mechanisms involved in depletion of p-NMA
- Material too soft to do mechanical tests

Outline

- Introduction
- Aged DB rocket propellant analysis
 - GPC
 - HPLC
- Aged DB gun propellant analysis
 - GPC
 - microhardness
- Conclusion and future work

Mw changes for artificially aged DB gun propellant

Mn changes for artificially aged DB gun propellant

Apparent number of chain scissions of NC artificially aged at 70 and 80°C

Vickers hardness test

 Easy and quick testing procedure which consists of measuring the diagonals of the impression left by a load of various magnitudes

Grain hardness changes with ageing time

Relationship between grain hardness and NC Mw

Naturally aged propellant 15-16y

Summary

- Mw and Mn decrease with ageing time
- Chain scission factor consistent with hydrolysis
- Grain hardness decreases with ageing time
- Good correlation between grain hardness and Mw
- Naturally aged material fits with the curve

Contents

- Introduction
- Aged DB rocket propellant analysis
 - GPC
 - HPLC
- Aged DB gun propellant analysis
 - GPC
 - microhardness
- Conclusion and future work

Conclusion

- The GPC method successfully transferred to formulated NC
- Ea (Mw) correlates well with published values
- Good correlation between the Mw and mechanical properties.

Ongoing experiments and future work

- Reducing sample preparation time (4h using shaker)
- Comparison GPC analysis, mechanical properties for aged propellants
 - DMA, microhardness, nanoindentation
- Round Robin analysis of NC in propellants planned for 2011/2012

Acknowledgment

- AWE and DOSG for sponsoring the work
- Roxel (UK Rocket Motors) Ltd for providing the DB rocket propellant
- Cranfield University staff and students

Thank you for your attention

Any question?

The Defence Academy Campus

