EFFECT OF CRYSTALLINITY ON AGEING BEHAVIOUR OF NITROCELLULOSE #### Dr M Moniruzzaman Department of Applied Science, Security and Resilience, Cranfield University, Defence Academy of the UK, Swindon, SN6 8LA, United Kingdom #### **Programme** - **→** Crystallinity measurement of NC by XRD - ◆ Age NC by heat and light - **→** Measure in-situ continuous viscosity - **→** Determine molecular weight by SEC - Try to understand the effect of crystallinity on NC ageing ### Experimental #### Photo-viscosity measurement - Modified Bohlin CVOR 150 - → 1°/40 mm cone and plate - Continuous real-time measurements - **→** In-situ irradiation - Controlled temperature - Free from solvent evaporation ## Modified sample cell ## Crystallinity vs N Content Degree of nitration dominates the degree of crystallinity ## Mw Changes of thermally aged NC #### Viscosities for different samples - UV wave-length was320-390 nm - Concentration of 10 mg/ml - → Solution viscosity increases with increasing N content - Exceptional viscosity behaviour for 13.55%N ## η_{sp} and M_w changes in samples | N content
in NC
(%) | C
(mg ml ⁻¹) | M _w pre-UV
(g mol ⁻¹) | M _w post-UV
(g mol ⁻¹) | M _w
decrease | η _{sr} /c
change
(%) | |---------------------------|-----------------------------|---|--|----------------------------|-------------------------------------| | 11.69 | 10 | 4.157 x 10 ⁵ | 1.726 x 10 ⁵ | 58 | 28 | | 12.15 | 10 | 5.629 x 10 ⁵ | 2.359 x 10 ⁵ | 58 | 60 | | 12.71 | 10 | 7.689 x 10 ⁵ | 3.402 × 10 ⁵ | 56 | 66 | | 13.55 | 10 | 4.045 x 10 ⁵ | 3.370×10^{5} | 17 | 26 | ## Effect of visible light (400–500 nm) on η and Μ_w - → 12.71% N content studied - No major viscosity changes - **→** No significant M_w change - η drop is due to heating effect - Viscosity recovered after irradiation ceased ### Effect of UV light on η and M_w (12.15%N) ### Effect of UV intensity on η and $M_w(12.15\%N)$ - η decreases are UV intensity dependent - M_w changes are not greatly influenced by UV intensity - Effects are non-linear ## SEC of solid NC containing 12.15%N, dried (1000 mW/cm²) - Retention time increases with UV irradiation time - No higher M_w shoulder is observed ## Changes in M_w of solid (12.15%N) - ◆ Light intensity was 1000 mW/cm² - Water accelerates photoaging and M_w drop - More acid is formed in wet NC than dry NC - M_w drop is non-linearly dependent on irradiation time #### Conclusions - **◆** Crystallinity is linearly dependent on N content in the NC - **→** M_w changes of thermally aged NC is significantly influenced by crystallinity - In-situ photo-viscosity measurement with modified rheometer gave better results with good precision than a conventional method - UV irradiation causes NC chain scission and hence drop in η but not at 365 nm - → Visible light shows no effect apart from small amount of heating - η and M_w decrease faster in wet NC than in dried NC ### Acknowledgement - **→** Thanks to - **◆ Keith Rogers and Sophie Becket** - **→ John Bellerby** - **→ Nathalie Mai** - **→ Phil Gill**