

EFFECT OF CRYSTALLINITY ON AGEING BEHAVIOUR OF NITROCELLULOSE

Dr M Moniruzzaman

Department of Applied Science, Security and Resilience, Cranfield University, Defence Academy of the UK, Swindon, SN6 8LA, United Kingdom

Programme

- **→** Crystallinity measurement of NC by XRD
- ◆ Age NC by heat and light
- **→** Measure in-situ continuous viscosity
- **→** Determine molecular weight by SEC
- Try to understand the effect of crystallinity on NC ageing

Experimental

Photo-viscosity measurement

- Modified Bohlin CVOR 150
- → 1°/40 mm cone and plate
- Continuous real-time measurements
- **→** In-situ irradiation
- Controlled temperature
- Free from solvent evaporation

Modified sample cell

Crystallinity vs N Content

Degree of nitration dominates

the degree of crystallinity

Mw Changes of thermally aged NC

Viscosities for different samples

- UV wave-length was320-390 nm
- Concentration of 10 mg/ml
- → Solution viscosity increases with increasing N content
- Exceptional viscosity behaviour for 13.55%N

η_{sp} and M_w changes in samples

N content in NC (%)	C (mg ml ⁻¹)	M _w pre-UV (g mol ⁻¹)	M _w post-UV (g mol ⁻¹)	M _w decrease	η _{sr} /c change (%)
11.69	10	4.157 x 10 ⁵	1.726 x 10 ⁵	58	28
12.15	10	5.629 x 10 ⁵	2.359 x 10 ⁵	58	60
12.71	10	7.689 x 10 ⁵	3.402 × 10 ⁵	56	66
13.55	10	4.045 x 10 ⁵	3.370×10^{5}	17	26

Effect of visible light (400–500 nm) on η and Μ_w

- → 12.71% N content studied
- No major viscosity changes
- **→** No significant M_w change
- η drop is due to heating
 effect
- Viscosity recovered after irradiation ceased

Effect of UV light on η and M_w (12.15%N)

Effect of UV intensity on η and $M_w(12.15\%N)$

- η decreases are UV
 intensity dependent
- M_w changes are not greatly influenced by UV intensity
- Effects are non-linear

SEC of solid NC containing 12.15%N, dried (1000 mW/cm²)

- Retention time increases
 with UV irradiation
 time
- No higher M_w shoulder
 is observed

Changes in M_w of solid (12.15%N)

- ◆ Light intensity was 1000
 mW/cm²
- Water accelerates photoaging and M_w drop
- More acid is formed in wet NC than dry NC
- M_w drop is non-linearly dependent on irradiation time

Conclusions

- **◆** Crystallinity is linearly dependent on N content in the NC
- **→** M_w changes of thermally aged NC is significantly influenced by crystallinity
- In-situ photo-viscosity measurement with modified rheometer gave better results with good precision than a conventional method
- UV irradiation causes NC chain scission and hence drop in η but not at 365 nm
- → Visible light shows no effect apart from small amount of heating
- η and M_w decrease faster in wet NC than in dried NC

Acknowledgement

- **→** Thanks to
 - **◆ Keith Rogers and Sophie Becket**
 - **→ John Bellerby**
 - **→ Nathalie Mai**
 - **→ Phil Gill**