

Engineering Assessment of Alternative Greenhouse Gas Removal Technologies

Miss Maelle Boughattas, Mr Rushabh Doshi, Miss Chiamaka Mbanusi, Mr Guillaume Perichon, Miss Marie-Anna Valentis

 \succ CCS

Introduction

Environmental Challenge From 1995 to 2015, CO₂ emissions have increased from 20.6 to 32.3 GtCO₂. At this pace, the International Energy Agency's suggested emission limit of 450 ppm will be exceeded in 20 years.

Background Developments of Carbon Capture and Storage (CCS) technology have essentially stalled, and more than 20 large-scale projects have been cancelled worldwide between 2010 and 2016. Given that we will almost certainly fail to meet our greenhouse gas emission target, the focus is now on alternative technologies: **High Technology**

 \succ K₂CO₃ modified potassium feldspar

TRL, research or pilot scale

Ranking

Ranking Criteria Listing of criteria with weighting

coefficients (where relevant) used to compare Greenhouse Gas Removal (GGR) technologies with each other.

Conclusions

No appropriate low TRL technology currently at a large-enough scale to significantly reduce CO₂ emissions because of:

- Economical non-viability
- Insufficient availability of resource
- > Insufficient operational scale

Further work

> Complete Life Cycle Assessment (currently unavailable to the best of our knowledge) to determine accurately lifetime, cost and total CO₂ emissions from construction to final decommissioning of each technologies.

However, currently the most promising alternative technology appears to be **Enhanced weathering** as:

- Storage is **permanent**
- Cost ranges from \$15 to \$361 per tonne of CO₂
- \succ CO₂ saving potential range is around **3.7 billion of tonnes of CO₂** equivalent per year [2].

Prof Ben Anthony: b.j.anthony@cranfield.ac.uk

Dr Peter Clough: p.t.clough@cranfield.ac.uk

www.cranfield.ac.uk/energy

- > Methodical Risk Assessment like hazard and operability study (HAZOP) or failure mode, effects and criticality analysis (FMECA).
- > Wide Scale Implementation studies.
- > In a more general perspective, to raise **awareness of policymakers**.

References

[1] IEA – Atlas of Energy – accessed on 20/04/2018 at: http://energyatlas.iea.org/#!/tellmap/1378539487

[2] P. Smith, S. J. Davis, F. Creutzig, S. Fuss, J. Minx, and B. Gabrielle, "Biophysical and economic limits to negative CO 2 emissions," Nat. *Clim. Chang.*, vol. 6, pp. 42–50, 2016.