

Morphology analysis measurement and correlation with fineness

Morphology of Nitrocellulose is an important property for the processability of Nitrocellulose in propellant process

THE FINENESS:

CLASSIC SPECIFICATION

Drying time: 2 hour

Settling time: 1 hour

10 g of Dry Nitrocellulose 250 ml of water

Official fineness result

It's a very old analysis

Easy to be done but poor information coming from this analysis

HOW TO GET ADDED VALUE INFORMATION ON SIZE LENGHT DISTRIBUTION / FINENESS

GOALS:

Analyser which can be used directly on production line for refining process and for R&D.

size length distribution curve

Finding a correlation between fineness and size length distribution

Quicker analysis than standard fineness (for production line)

Existing equipment:

For solid particles:

BECKMANN-COULTER: Rapid vue

RETSCH: CAMSIZER XT

SYMPATEC : QICPIC/R

In paper industry:

METSO (Kajaani): F55

ABB (Lorenzen et Wettre): L &W 912

TECHPAP: MORFI

our choice: MORFI ANALYSER FROM TECHPAP

Easy to perform, can be used in production line by shift worker

Quick analysis (max 5 minutes) in suspension in water.

Great experience in paper industry

Could be used for celluloses and nitrocellulose

Good performances with reasonable price

High speed camera

Skeletonizing software model

VERY SIMPLE WAY FOR DOING ANALYSIS, CAN BE PERFORMED BY SHIFT WORKER

Take a sample of nitrocellulose from the tank

Press by hand for eliminating water

Put about 3 gr of NCE into the analyser

Press the power button

Automatic cycle: dilution, mixing time, analysis, discharge, cleaning

5 minute later: all the information

a lot of information can be obtained:

length distribution

Width distribution

curl, coarseness, fibrillation index,

Let's have a focus on mean length weighted fibre length:

15000 fibres analysed

acquisition time = 60 second

global analysis time = 5 minutes

Length – Average and Distribution

- Arithmetic (dependent on fines content)
- Length-Weighted / mean length (most often used)
- Length-length-weighted average length
- Area-weighted average length

- in nitrocellulose, fines are important in number but low in 'weight', but not so low and can impact calculations

- With the software, you can select fines size area and reject fines

mean length weighted in length (µm)

Fines < 60 microns are rejected

GRADE B: length weighted fibre length

FINES: arithmetic distribution (5μm to 60 μm)

Fibre width : 10 - 45 microns

REPEATABILITY

10 acquisitions with same sample

	mean length weighted fibre length (µm)
ACQUISITION 1	301
ACQUISITION 2	303
ACQUISITION 3	298
ACQUISITION 4	303
ACQUISITION 5	298
ACQUISITION 6	300
ACQUISITION 7	303
ACQUISITION 8	301
ACQUISITION 9	302
ACQUISITION 10	302
average	301
standard deviation	1,91
% error	0,63
ACQUISITION 5 ACQUISITION 6 ACQUISITION 7 ACQUISITION 8 ACQUISITION 9 ACQUISITION 10 average standard deviation	298 300 303 301 302 302 301 1,91

10 analysis with same NCE

	mean length weighted fibre length (μm)
ACQUISITION 1	370
ACQUISITION 2	379
ACQUISITION 3	380
ACQUISITION 4	381
ACQUISITION 5	371
ACQUISITION 6	386
ACQUISITION 7	376
ACQUISITION 8	376
ACQUISITION 9	374
ACQUISITION 10	376
average	376,9
standard deviation	4,79
% error	1,27

GRADE B: length weighted fibre length

GRADE B: length weighted fibre length

NEW WAY OF ANALYSIS FOR FINENESS

- GOOD CORRELATION BETWEEN FINENESS AND MEAN LENGTH WEIGHTED I FNGTH
- GOOD REPEATABILTY OF THE ANALYSIS
- AT THE SAME TIME: INFORMATION FOR FINENESS AND SIZE LENGTH DISTRIBUTION WITH THE SAME ANALYSIS
- QUICK ANALYSIS: 5 MINUTES

 WE CAN BE OPTIMISTIC FOR FUTURE: THIS NEW METHOD COULD BE AN AITERNATIVE FOR FINENESS........ AND OTHER INFORMATION

MANY THANKS FOR YOUR ATTENTION

Claude GUILLAUME
MANUCO
Technical Manager

c.guillaume@manuco-nc.com

+33 553636118

+33 673994542