Bioinformatics has become the most exciting field in biology. This Bioinformatics MSc course provides a unique hands-on learning experience in bioinformatics skills, by combining the latest advances in analysing high-throughput genomic, transcriptomic and metabolomics data.

Cranfield’s Bioinformatics MSc is the first of its kind in the UK. With more than 200 alumni over the past 10 years, it has become the most popular postgraduate course in Bioinformatics in Europe. As Cranfield is a solely postgraduate university it means that every taught module of the Applied Bioinformatics MSc is at Masters-level, which is why it is the award-winner of the BBSRC’s Masters Training Grant (MTG) for best course in life sciences. Our taught modules cover in great depth a plethora of programming languages typically applied in bioinformatics, such as Perl, Java, R and SQL, as well as modern Web technologies such as JavaEE, NoSQL and JavaScript. Furthermore, we have two dedicated taught modules focusing on established bioinformatics protocols for the latest Next Generation Sequencing (NGS) and 3rd Generation Sequencing (3GS) technologies.

Who is it for?
This course aims to equip graduate scientists with the computational skills and awareness needed to process, analyse and interpret the vast amounts of biological data now becoming available. This course is equally suitable for candidates from life sciences disciplines who aim to gain relevant programming and computational skills, and graduates with an IT/computer science background who want to gain the molecular biology understanding to become bioinformaticians.

On completion of this course, you will be able to apply information technology and computational techniques to process genomic and genetic data, as well as developing novel drug discovery and diagnostic tools.

Additionally, you will gain the skills to design and implement software tools and databases using the latest advances in standalone and web-based technologies to fulfil the need of the research community.

Course structure
- Eight taught modules (40%),
- Group project or dissertation: (20%),
- Individual research project (40%).

Informed by industry
Cranfield University benefits from the input of a group of world-renowned experts in a range of applied sciences including bioinformatics. We lead and collaborate in diverse research and consultancy projects, both nationally and internationally.

Our collaborators include:
- GlaxoSmithKline
- Queen Mary University of London
- Unilever
- Sanofi Aventis
- The European Bioinformatics Institute
- London School of Hygiene and Tropical Medicine
- Cambridge University.

Future career
Our MSc opens doors to careers in industry, public research establishments and university research. The multidisciplinary nature of our course has allowed our students to follow diverse career paths in various medical-related sectors.

Successful graduates have been able to pursue or enhance careers in a variety of key areas such as Pharmaceutical and Biotech companies, plant research institutes, food sector, public Institutions, bioinformatics, IT companies.

Key information
Duration:
MSc: one year full-time, two to three years part-time.

Start date:
Full-time: October.
Part-time: October.

Qualification:
MSc.

Location:
Cranfield campus.

Entry requirements
A first or second class UK Honours degree (or equivalent) in a life science, computer-science subject or candidate with appropriate professional experience.
Overview of taught modules

Example modules
Modules form only part of the course content with the projects and theses making up the balance. Please see the course structure for details.

The list below shows the modules offered in the 2019/2020 academic year, to give you an idea of course content. To keep our courses relevant and up-to-date, modules are subject to changes - please see the webpage for the latest information.

Compulsory modules
(all the modules in this list need to be taken as part of this course)

Introduction to Bioinformatics using Perl
This module provides an introduction to bioinformatics (what it is, why it is needed and what it can deliver) as well as the required skills to browse, query various relevant resources (e.g. Genbank, Ensembl, PDB). The module covers the programming basics required in order to program in Perl, the most popular programming language in the bioinformatics community; and its application in retrieving, parsing and visualising biological sequence data.

Exploring Data Analysis and Essential Statistics using R
To provide an overview of important concepts in statistics and exploratory data analysis. The module introduces the main concepts in analysing biological datasets using the R environment, as well developing bespoke scripts for multivariate analysis such as principal component analysis and hierarchical clustering.

Next Generation Sequencing Informatics
To introduce the techniques that have given rise to the genomic data now available, and develop skills and understanding in the bioinformatics approaches that facilitate evaluation and application of these data. Over the past decade, Next-generation DNA Sequencing (NGS) technology has been a huge stimulus for a lot of breakthrough discoveries in biology. Therefore this module provides an overview of many core types of NGS projects, including latest protocols in genomic and transcriptomic analyses, genotyping and variant calling as well as detailed hands-on practical sessions of our best practice data-analysis workflows.

Proteome Informatics
This module provides you with an awareness of the current trends in proteomics and the crucial role that bioinformatics plays within this field. Areas covered include proteomics repositories and protein/peptide identification algorithms.

Informatics for Metabolomics
The purpose of this module is to explore the analytical and statistical techniques that are central to the field of metabolomics, and introduce the emerging technologies that will generate yet more data in the future. Subjects covered include an introduction to metabolomics, multivariate classification and multiway analysis.

Programming using Java
This module introduces the concepts of object oriented programming using Java. Java is the pre-eminent programming language for serious application development on the Internet. The module covers Java data objects of primitive and reference data types and introduces students to the basic fundamentals of programming in Java, with hands-on practical sessions on implementing simple programs using calculations, variables, control statements and loops.

Data integration and Interaction Networks
Data integration represents a major challenge for bioinformatics research. This module covers the most popular data management, integration and visualisation tools within the bioinformatics community as well as the main concepts of databases design and normalisation.

Advanced Sequencing Informatics and Genome Assembly
The purpose of this module is to develop a system-level view of biological systems and their response to various internal and external factors, through the integration of advanced NGS and 3GS sequencing data with functional annotation using established concepts of graph theories widely applied for various assemblers such de-Bruin and Overlap-layout consensus.

Group project
Working in project teams is part of everyday working life. It requires not only your individual expertise but also an appreciation of the skills of the other members of the team. This part of the course gives you the opportunity of working as part of a team on a group project. This is an invaluable experience that will help you to recognise and implement the differing contributions that colleagues bring to team work, and the different roles that we can choose to play within a team.

Individual project
A four-month thesis project carried out either at Cranfield or an external research establishment or commercial organisation within the UK or Europe. This gives you the chance to concentrate on a subject area of particular interest to you, perhaps in collaboration with the type of organisation that you are hoping to find employment with.

Contact details
T: +44 (0)1234 758082
E: studyagrifood@cranfield.ac.uk

For further information please visit
www.cranfield.ac.uk/bix

Every effort is made to ensure the information on this sheet is correct at the time it was produced in October 2019. Please check the web pages for the latest information.