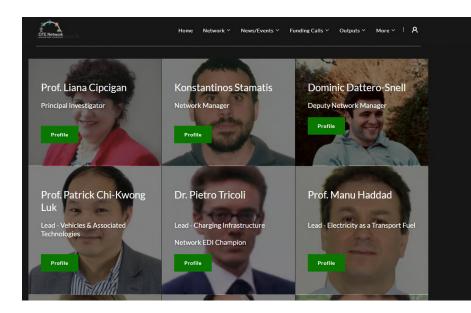


Electric Taxiing – and Electric Machine Technologies for Aerospace

Prof Patrick Luk, Professor in Electrical Engineering Head of Electric Power and Drives (ePAD) Laboratory Cranfield University p.c.k.luk@cranfield.ac.uk


Decarbonising Transport through Electrification, A whole system approach Network+

Engineering and Physical Sciences Research Council

DTE Network

https://dte.network/

Southampton

How to address the aviation transport challenges **today** (Flightpath 2050 Vision):

- 75% reduction in CO2, 90% reduction in NOx, 65% reduction in noise (2000 base line)
- All aircraft ground movements are emission-free
- 90% of travellers within Europe are able to complete their journey, door-to-door within 4 hours
- Cost efficiently

Engineering and **Physical Sciences Research Council**

Fundamental research in electric powertrains – A modular topology

Traction motors for electric vehicles

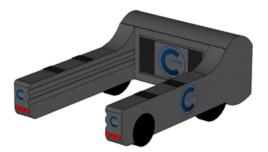
Propulsion motors for aircraft, ships and trains

*P.C.K. Luk, "Superconducting machines — The enabling technology for future electric propulsion in aircraft", IEEE International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security, Dec 2017, pp1-7

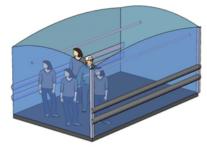
Theme 2: Connected Autonomous Vehicles (CAV)

A Modular framework to build CAV

DTE Network



(a) Autonomous motor-driven platform


(b) Rare-earth PM in-wheel motor

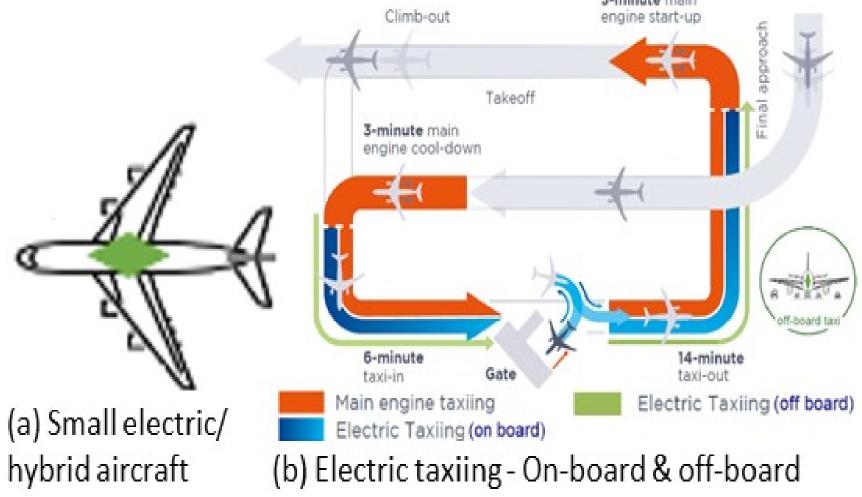
(c) Ferrite traction PM motor

Cranfield's Modular Autonomous Electrified Platform and the Traction Motor Technologies

(a) Autonomous motor-driven platform

(b) People mover capsule

Mobility as a Service (MaaS)


(c) Cargo capsule

Theme 3: Technology Demonstrators

Engineering and Physical Sciences Research Council

DTE Network

Technology Demonstrators for e-taxiing (for commercial airliners and small electric aircraft 3-minute main

Cranfield's study on electric taxiing

- Systematic E-taxiing studies by Cranfield (staff and students) since 2014
- The environmental case for zero emissions e-taxi of short haul airliners has been demonstrated as feasible using on-board systems retrofitted to drive current airliners main landing gear wheels by a Cranfield study [1]. A net fuel saving is predicted, as well as the local ground emissions eradication.
- Up to £1/4M fuel cost could be saved per annum per aircraft (A320 size)

[1] Benefit and Performance impact analysis of using hydrogen fuel cell powered e-taxi system on A320 class airliner" Liu, Zihang, Stockford, J., Lawson C. P., The Aeronautical Journal, accepted for publication October 2018.

Overview of state-of-the-art electric taxiing systems I

- Currently electric powered on board taxi solution on the market is wheel-tug [2]. There has been minimal uptake of the technology, and there are concerns that this nose-wheel driven solution lacks the necessary traction for wet runway operation.
- Safran and Airbus had announced commercialisation of a main-gear-wheel driven solution [3]. This solution is not zero-emission. It generates electricity by burning kerosene in the aircraft's auxiliary power unit. The programme was cancelled.

[2] http://www.wheeltug.com/

[3] <u>https://www.safran-landing-systems.com/media/airbus-and-safran-market-electric-taxiing-system-a320-family-20170621</u>

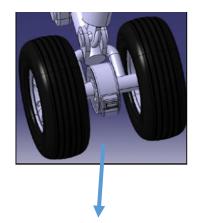
Overview of state-of-the-art electric taxiing systems II

- TaxiBot is the most advanced and only certified off-board system currently on the market [4]. It has several drawbacks:
 - Only suitable for pushback and initial taxi out
 - Unsuitable for taxi in
 - Manual operation
 - Potential long delays due to connecting and disconnecting

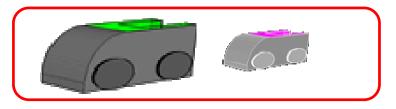
[4] http://www.taxibot-international.com/

Green (Electric) Taxiing System

Parameters	Value	Unit	Valu e	
Stator Outer Diameter Dso)	360	mm	360	
Stator Inner Diameter Dsi)	317	mm	317	
Rotor Outer Diameter Dro)	305	mm	305	Name of
Axial Length (le)	100	mm	100	
Air gap Length (g)	6	mm	6	
Number of Poles (p)	20		20	
Number of Slots (q)	30		30	
Rated Torque (T)	1500	Nm	150 0	
Rotating Speed	320	rpm	320	


Cranfield Energy and Power

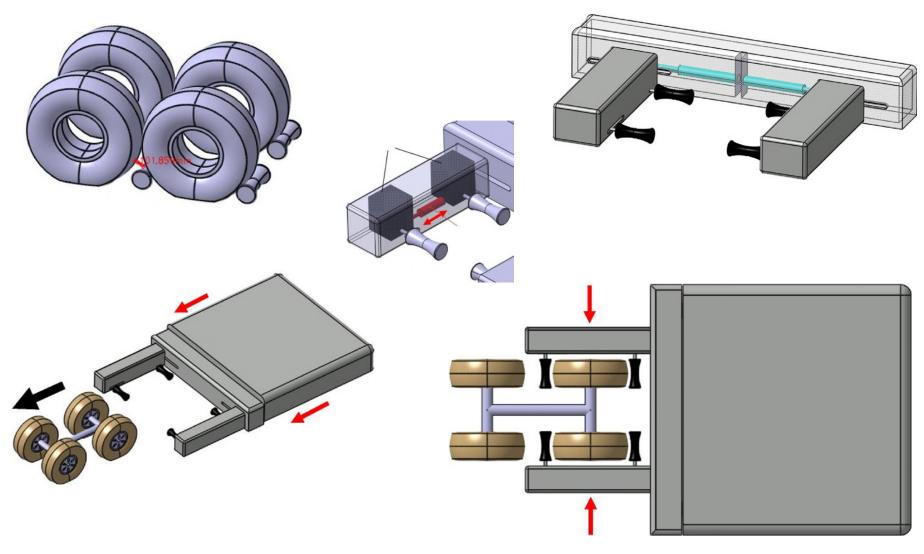
Machine Parameters	Value	Unit
Rotor Outer Diameter (Dro)	450	mm
Stator Outer Diameter (D _{so})	423.7	mm
Stator Inner Diameter (Dsi)	298	mm
Air gap Length (g)	2	mm
Stack (axial) length	160	mm
Number of Poles (p)	52	
Number of Slots (g)	48	
Rated Torque (7)	1500	Nm
Motor efficiency	90	
Rotating Speed	320	rpm
Lamination (stator and rotor)	59.5	kg
Copper windings	11	kg
PM (NdFeB)	6.6	kg
Machine Active total weight	77.1	kg


(Honeywell and Safran, 2013)

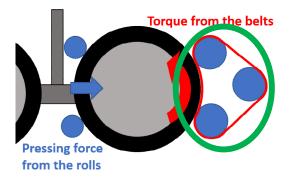
Previous Cranfield study on in-wheel configuration

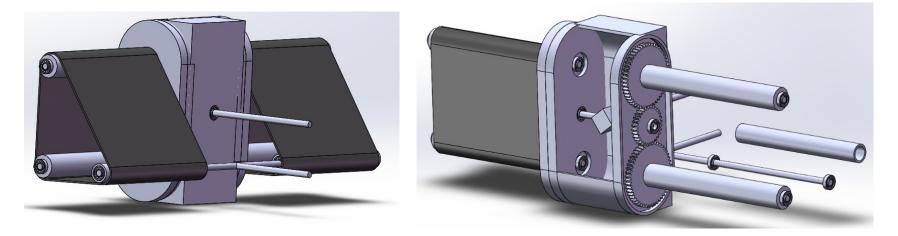
Autonomous taxi-bot - building on a Mobility As A Service (MAAS) concept)

Study 1 – Mechanical and energy design of off board e-taxiing

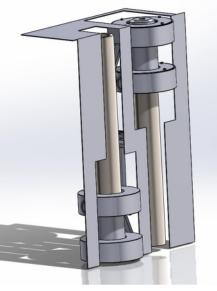

Transmission of the power directly to the wheels of the Main Landing Gear

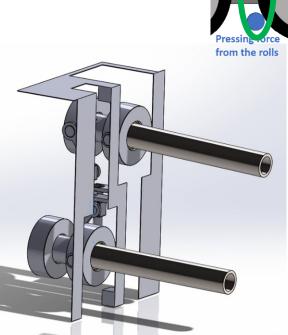
- Friction belt to transmit the power from the motor
- Rolls to ensure sufficient traction

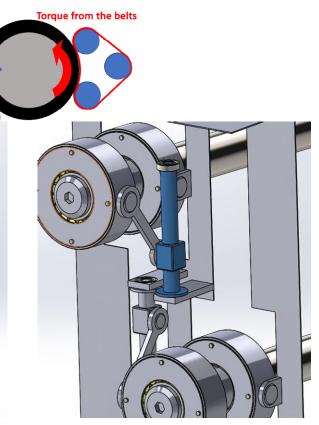

Initial design without belt



Mechanical design – Friction belts

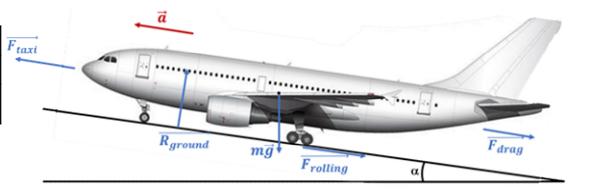

- The power comes from the motor through the middle axle.
- Differential separates it between the two belts
- Tension is assured by the back rolls




Folding rolls to access the front of the tyre in order to provide traction for the belts.

Folded view

Unfolded view



Screw-Nut mechanism

Performances – Motor selection (use commercially available)

Top speed	23 knots (11.83 m/s)
Acceleration	0 to 10 knots (5.14 m/s) in 20s
Operability	1.5% slope 15 m/s wind

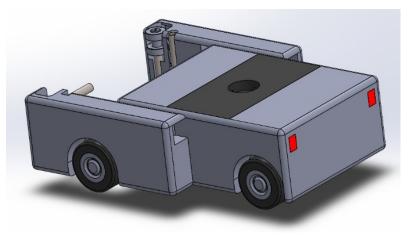
EMRAX 348				
Peak torque	1000 Nm			
Continuous torque	500 Nm			
Maximum speed	4000 RPM			
Efficiency	92-98%			

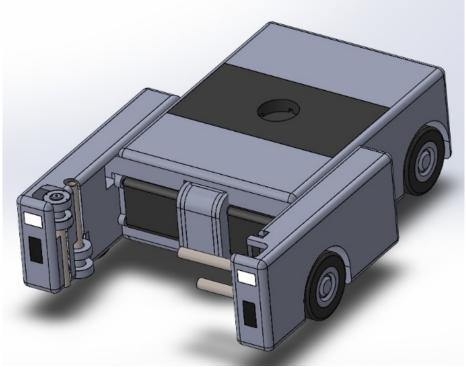
Tyre Dimension consideration

Main dimensioning criteria:

- Tyre size
- MLG width
- Lowest point of fuselage

Тур	e	MLG width /m		
737	,	1.125		
747	,	1.538		
777	,	1.955		
A32	0	1.377		
A38	0	2.101		

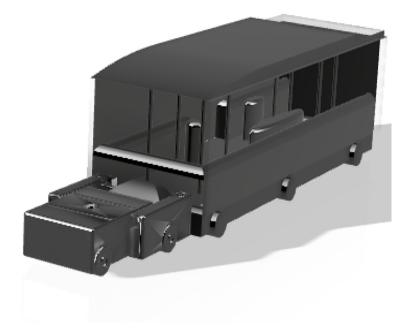

Туре	Bottom of fuselage /m
737	0.91
747	2.08
777	3.58
A320	1.6
A380	4.66

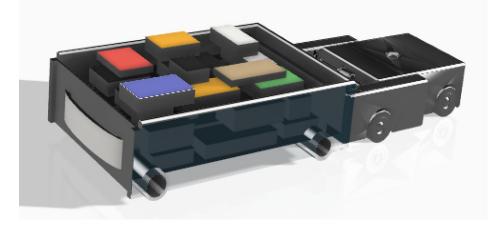

MAIN GEAR TIRE SIZE						
	Inflatable size /mm					
Туре	Wio	dth	Diameter			
	Section	Shoulder	Centerline	Shoulder		
737	355	305	1010	890		
747	438	368	1238	1092		
777	555	500	1368	1287		
A320	450	405	1207	1137		
A380	551	485	1444	1358		

Mechanical design – Global assembly

Global assembly with the different parts

- Main body with battery and motor
- Power transmission with belts
- Sliding arms with folding rolls
- Lights, sensors, etc.



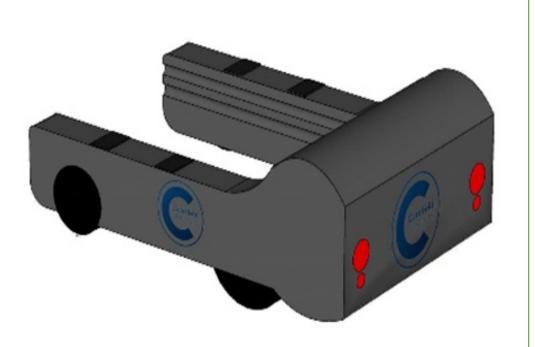


Passengers transportation

Cargo transportation

Study 2 - Concept exploiting autonomous vehicles for electric taxiing

Providing the aircraft Taxiing and Landing as a mobility service

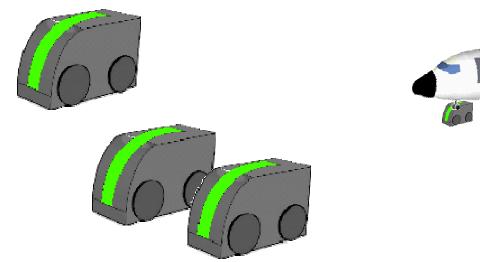


Autonomous Electric Taxiing and Landing Vehicle System

This new concept involves further study to verify the potential advantages such as energy saving, battery sizes and charging infrastructure.

Cranfield's Autonomous Modular Vehicle Platform

- Modular motor technologies
- Modular battery configuration
- Charging/discharging interface to grid
- Grid support
- Taxiing lock and unlock interface



Cranfield Modular Electric Taxiing System

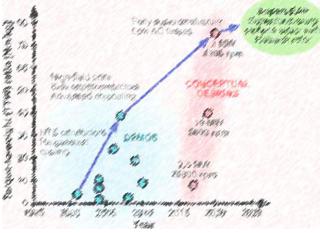
Mobility-as-a-Service (MaaS)

Driven by demands in European's 2050 Efficient Transportation targets: Every door to door journey within EU must be within **4 hours and CO2 free**

Luggage mover People mover Mobile office Premium VIP capsule

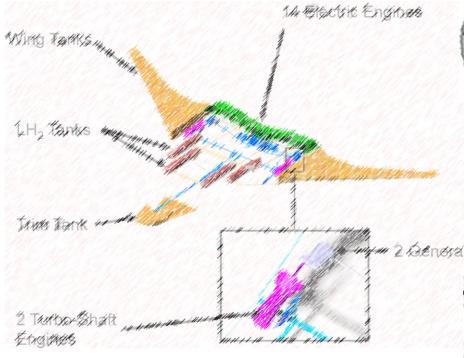
23

Cranfield Energy and Power

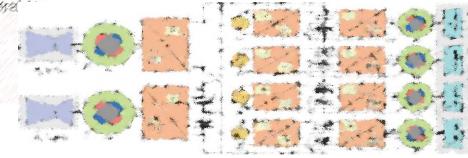

Superconducting Low-Emission Aircraft Propulsion System (SuperLEAPs)

Cranfield

Energy and Power

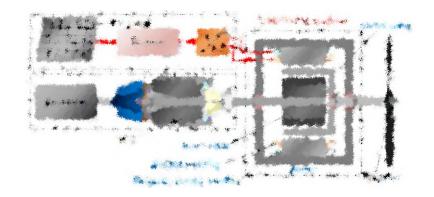

Cranfield University BW-11 very large blended wing-body passenger transport aircraft

Advancements toward ultra-lightweight superconducting electrical machines with SuperLEAPS goal indicated

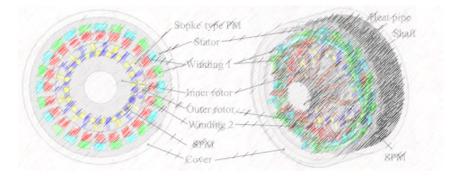

Overall design philosophy of improving general electric aviation using partially superconducting machines (SCMs)

Cross-sectional view of the proposed slotless superconducting stator with ironless Halbach rotor

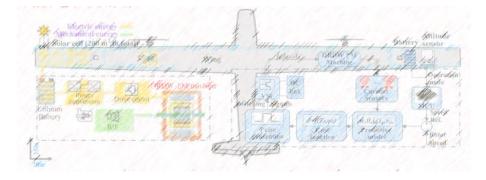
Generic fuel cell based drive system for a single propeller


Cranfield University BW-11 very large blended wing-body passenger transport aircraft

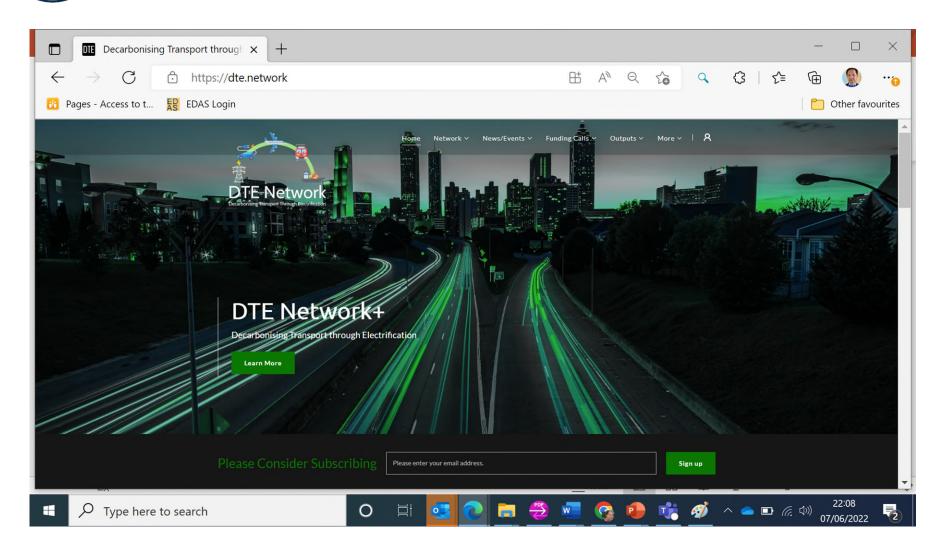
Modular distributed series-connected propulsion system with H2 fuel



Novel hybrid drive for High Endurance UAV



Operating principle decomposition of proposed DRDW-PM machine


Proposed radial DRDW-PM machine. (a) Cross view. (b) 3D model with heat pipes. Proposed DRDW-PM machine for hybrid power powertrain of HE-UAV.

Schematics of power flow and control strategy of scale-HE-UAV.

Thank you for your attention! And visit our DTE site for continuous update news

Cranfield Energy and Power

