

DOSG Nitrocellulose: Rocket Propellant Qualification Requirements

MP Sloan, DOSG ST1, 16/04/2012

CONTENTS

- Cellulose and Nitrocellulose
 - Recent Nitrate Ester Source Changes
- Nitrocellulose as a Rocket Propellant Bonding Agent
- Double Base Propellant Stability Testing
 - Assessment of non-UK Propellant for Naval Use
 - Conclusions

UK MoD Requirement

- Continuity of Supply of Nitrocellulose Propellants
- Consistency of Propellant Quality
 - Performance
 - Safety Characteristics
 - Service Life

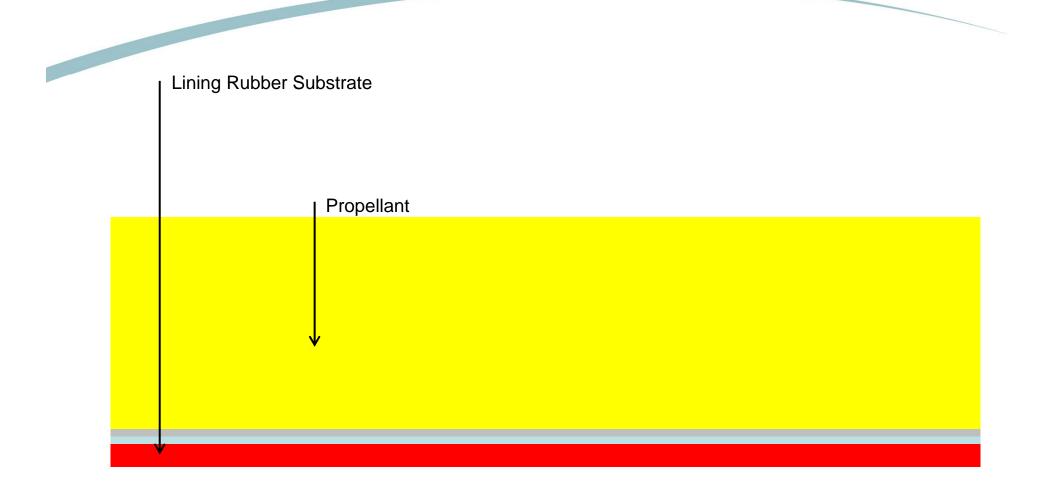
Cellulose/Nitrocellulose Supply 1990-2012

- Cotton Linter background since 1990:
 - Holden Vale Linters, Dumfries NC
 - Holden Vale Linters, Bishopton NC
 - Temmings Linters, Bishopton NC
 - Temmings Linters, Bishopton NC, Muiden Plant
 - Temmings Linters, Bergerac NC
 - Temmings Linters, Wimmis
 - Milouban Linters, Bergerac NC
 - Milouban Linters, Wimmis
 - Bergerac future material/SNPE-SAFRAN uncertainty
 - Replacement Source Linters, Wimmis 2008
- ✓ Successfully validated for UK MoD in 2011

UK MoD Requirement: Background

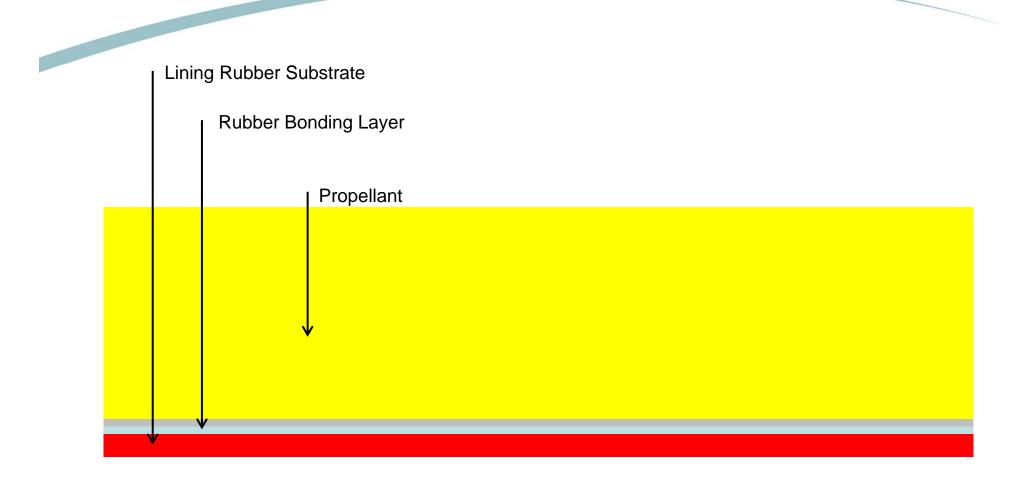
- Gun Propellants continue to prove tolerant to source changes
- Rocket Propellant position more complex:
 - Lower Performance, cartridge load propellants requalifications have also been shown tolerance to source changes
 - High Performance Case-Bonded rocket motors more problematic
 - Nitrocellulose is used as the primary bonding agent in some Service UK Rocket motors

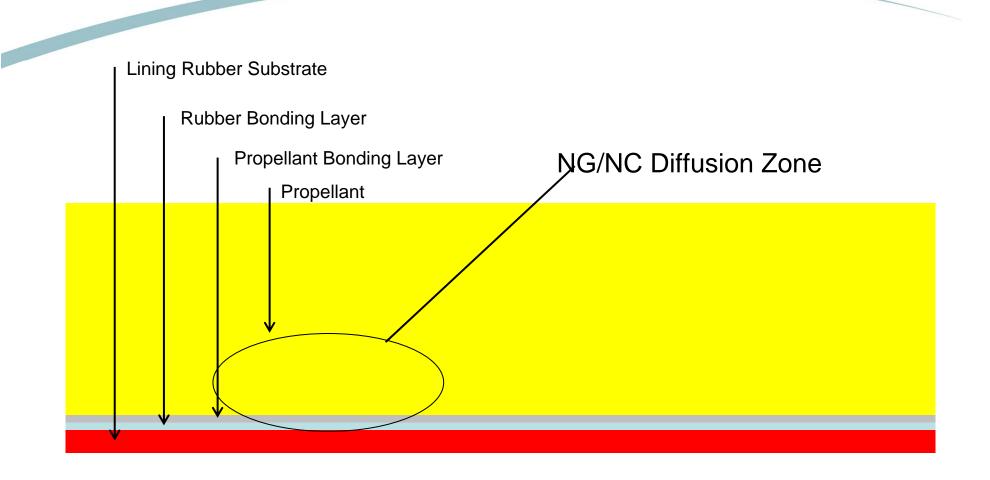
12 Year Service Rocket Motor



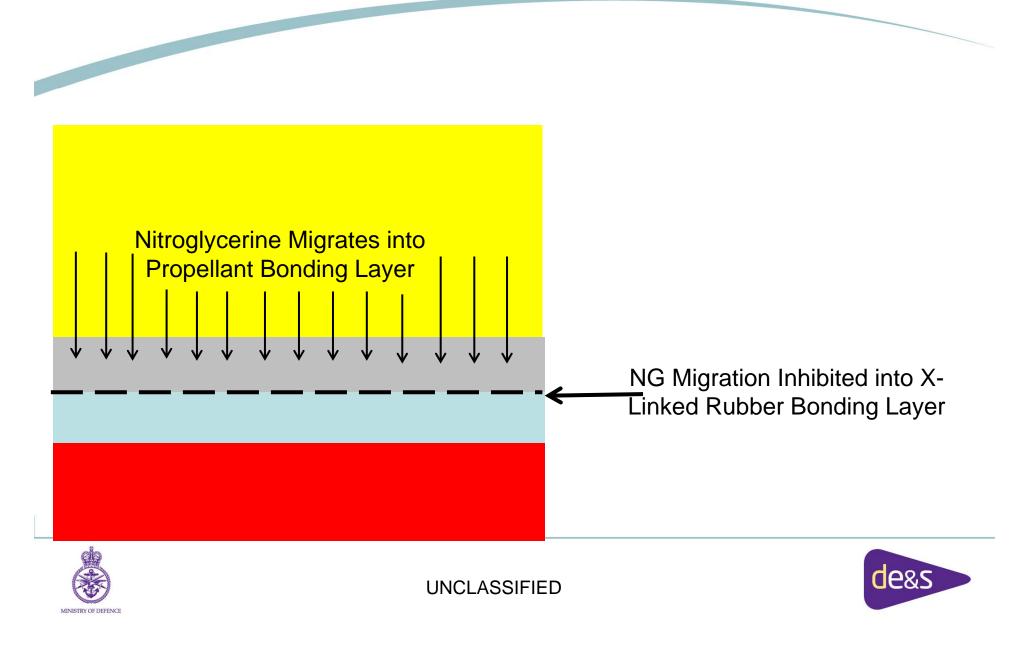
Rocket Motor Failure: Role of NC

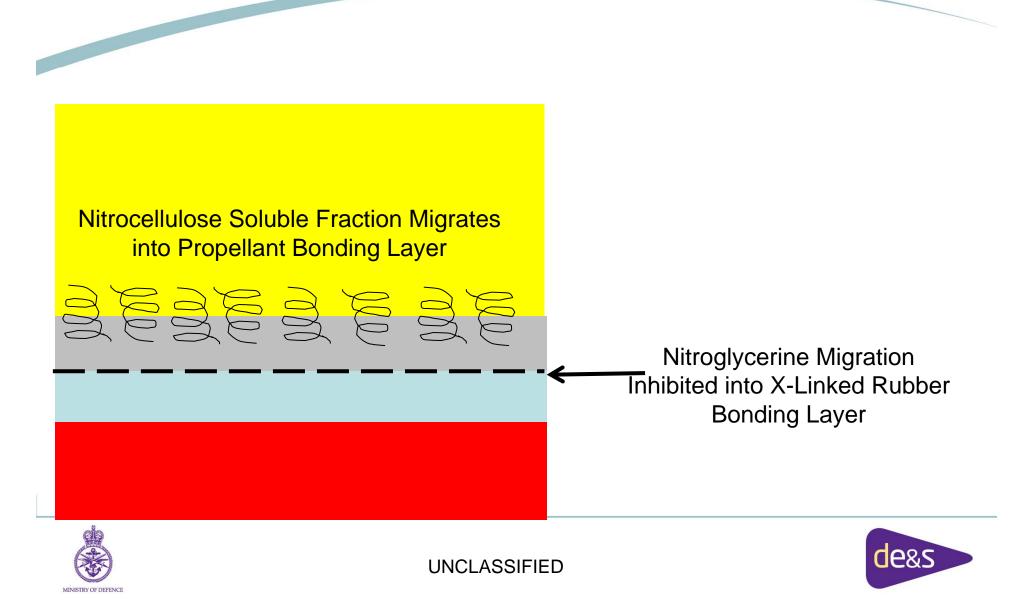
- Cause identified as propellant to lining rubber bondline failure
- Rocket Motor was beyond service life
- But older motors had been fired without fault
- Nitrocellulose source had changed
 - Bondline variability dates from this change
 - Service Life reduced for later batches





Lining Rubber Substrate						
Rubber Bonding Layer						
Propellant Bonding Layer						
			Propellant			
		↓ ↓	,			
		,				





Propellant Separation – 12 Year Service Motor

Nitrocellulose Propellant Bonding: Key Parameters

- For propellant bonding:
 - NG diffusion rate
 - NG bonding layer equilibrium concentration
 - NC molecular weight distribution
 - NC solubility in NG and in bonding layer
 - NC gelatinisation characteristics (polarity distribution/size)
 - NC diffusion rate
- None of these parameters are adequately understood to enable bond strength prediction
- MoD funded research programme underway

Conclusion

- The role of nitrocellulose characteristics in forming propellant bonds not adequately understood
- Basic parameters not yet quantified
- Predictive bonding model required to enable optimised service lives

Chemical Stability of Nitrocellulose Propellants

- Historic UK Civil and Military Tests
 - Abel Heat Test
 - 80^oC Self Heating Test (originally 'Silvered Vessel Test')
 - 65.5°C Chemical Stabiliser Consumption Test
- Test Requirements included in: JSP482 MoD Explosive Regulations
 - JSP 762 Weapons... Through Life Capability Management
- Disadvantage UK Tests, Not Specified for Overseas Propellants

Double Base Propellants for New UK Missile

- Naval Application historically particularly demanding requirements in UK (BR1203)
- No Abel Heat Test or 80^oC Self Heating Test data
- Propellants in service with other Nations
 - Use a comprehensive characterisation of these propellants to establish propellants are 'Safe and Suitable for Service'

Test Plan for Double Base Propellants

		Artificial Ageing Regime						
Test	Fresh	10 Days at 80°C	4 Weeks at 60°C	8 Weeks at 60°C	12 Weeks at 60°C			
Chemical Stability								
Stabiliser Content (% 2-NDPA)	Y	Y	Y	Y	Y			
Abel Heat Test (65.5°C)	Y	N	N	N	Y			
Vacuum Stability	Y	N	N	N	Ν			
Calorific Value	Y	N	N	N	N			
90°C Mass Loss	Y	N	N	N	N			
Self Heating Test	Y	N	N	N	N			
UN Thermal Stability (3c)	Y	N	N	N	N			

Two Propellant Formulations, Sustain Type and Igniter Type

Testing of Double Base Propellants

Test (Conditions)	Sustain		Igniter	
	Unaged	12 Weeks @ 60°C	Unaged	12 Weeks @ 60°C
Abel Heat Test (mins @ 65.5°C)	9	7	16	8
Self Heating Test (hours @ 80°C)	2952	-	3192	-
Chemical Stabiliser Content (%) [10Days @80°C]	1.70	1.37 [0.96]	1.76	0.74 [0.18]
Vacuum Stability (mls gas, 5g, 10 Days @80°C)	6.4	-	3.9	-
Mass Loss Test (days @ 90°C for 5% loss)	37 (4.98%)	-	31 (4.90%)	-
UN Stability Test (48 hrs. @ 75°C)	Pass	-	Pass	-
Temperature of Ignition (°C)	176	-	162	-
Calorific value (Cal/g)	864	-	1130	-

Testing of Double Base Propellants

Test (Conditions)	Susta	Sustain		Igniter	
	Unaged	12 Weeks @ 60°C	Unaged	12 Weeks @ 60°C	
Abel Heat Test (mins @ 65.5°C)	9	7	16	8	
Self Heating Test (hours @ 80°C)	2952	-	3192	-	
Chemical Stabiliser Content (%) [10Days @80°C]	1.70	1.37 [0.96]	1.76	0.74 [0.18]	
Vacuum Stability (mls gas, 5g, 10 Days @80°C)	6.4	-	3.9	-	
Mass Loss Test (days @ 90°C for 5% loss)	37 (4.98%)	-	31 (4.90%)	-	
UN Stability Test (48 hrs. @ 75°C)	Pass	-	Pass	-	
Temperature of Ignition (°C)	176	-	162	-	
Calorific value (Cal/g)	864	-	1130	-	

Testing of Double Base Propellants: Conclusions

- Individual Tests Give Apparently Contradictory Results
- Ranking of Propellant Stability Inconsistent Between Tests
- Abel Heat Test Not Appropriate for Overseas Propellant
- DOSG Favoured Test Ranking For NC Based Propellants
 - 80°C Self Heating Test (but a UK Only Test)
 - Chemical Stabiliser Depletion
 - Vacuum Stability Test
 - 90°C Mass Loss Test

Abel Heat Test/Self Heating Test for NC Propellants

- Abel Heat Test should not be used as the primary measure of NC based propellant stability – prefer Stabiliser Depletion Measurement
- Abel Heat Test appropriate as a Quality Test where it was used in original manufacturing specification
- DOSG will require 80°C Self Heating Test where any anomaly or marginality found in Stabiliser Depletion, Vacuum Stability or 90°C Mass Loss Tests

Abel Heat Test/Self Heating Test for NC Propellants

- Abel Heat Test should not be used as the primary measure of NC based propellant stability – prefer Stabiliser Depletion Measurement
- Abel Heat Test appropriate as a Quality Test where it was used in original manufacturing specification
- DOSG will require 80°C Self Heating Test where any anomaly or marginality found in Stabiliser Depletion, Vacuum Stability or 90°C Mass Loss Tests
 - UK have only very limited Heat Flow Calorimetry database for nitrocellulose based rocket propellants.
 - Include HFC in future Propellant Qualification Tests

Conclusions:

- A wide range of chemical stability tests exist
- It is rarely a case of 'good' and 'bad' tests
- Rather 'appropriate' and 'inappropriate' tests
- NC propellants are not entirely understood
- NC propellants will be required for decades to come
- Further research is essential for both safety and reliability

