Paul Deacon

AWE

Activities Complimentary to GPC

Activities Complementary to GPC

- Mass measurement techniques
 - triple detector GPC
 - ultracentrifugation
 - MALDI-TOF mass spectroscopy
- Hyphenated GPC FTIR
 - LC-Transform combined with molecular modelling
 - potential pre-peak characterisation
- Computational modelling of molecular weight distributions as polymers degrade
 - mechanistic diagnostics

Doc. Control No.

Unclassified

XXX/000/0

Unclassified

GPC Mass Measurement Techniques

Enhanced GPC techniques:-

- Triple-detector GPC capability
 - not tried Universal (hydrodynamic volume) calibration mwt's
 - attempting to optimise light scattering mwt's
 - viscosity data useful (the only absolute measurement)
 - conformation (R_g, Mark-Houwink etc) used by modellers
- Light scattering theoretically superior to conventional and universal GPC
 - "near absolute" calibration-free mwt data (M_n & M_w)
 - for NC, light scattering M_w values much lower that PS equivalents (~ 30%) - why?
 - \bullet very dependant upon dn/dc values (M α (dn/dc)^{0.5})

Doc. Control No.

Unclassified

Alternative Mass Measurement Techniques (I)

Ultracentrifugation at (UK)NCMH, Nottingham

- 3 high viscosity nitrocellulose(s) analysed as solutions in THF (concentration cf. GPC)
 - Velocity Sedimentation
 - samples centrifuged at relatively high speed (~10,000rpm) for short period of time (~ 12hrs)
 - all samples showed a very narrow (almost monodisperse) distribution (when expressed as sedimentation coefficient)
 - conversion to mass yields average Mw values ~ 150,000 (!)
 - "easily confused for a partially degraded protein"
 - Equilibrium Sedimentation (slower but absolute technique)
 - analysis now complete for all 3 NC samples
 - data analysis confirms velocity observations ~ monodisperse, low mwt!

Doc. Control No.

Unclassified

XXX/000/00

Unclassified

Alternative Mass Measurement Techniques (II)

MALDI-TOF mass spectroscopy

- Samples of nitrocellulose are being transferred to LLNL in the US for MALDI-TOF analysis
 - no reported molecular weight for nitrocellulose by MALDI-TOF
 no published starting protocol to work from
 - reported that dipole polarisation of nitrate ester groups means that analysis best performed in "negative ion mode"
- Nitrocellulose films have been used as the inert matrix material for MALDI analysis of oligonucleotides!
 - suggests that the NC molecular weight was either very high or very low (i.e. outside the analysis "window" (~150,000))

Doc. Control No.

Unclassified

Use of LC-T to Characterise Pre-peak

- Apparent 'high mass' pre-peak in cotton linter NC
- FTIR fingerprints showed both peaks were nitrocellulose
 - pre-peak potentially fully nitrated, i.e. pure trinitrocellulose
 - consistent with molecular modelling predictions

Doc. Control No.

Unclassified

XXX/000/00

Unclassified

Molecular Modelling of Nitrocellulose

- Molecular modelling predicted an extended linear structure for nitrocellulose chains
- Trinitrate clusters thought to be the most extended
 - may be high hydrodynamic volume not high mass
 - explanation for pre-peak?
 - rod-like trinitrocellulose, high hydrodynamic volume & good light scattering efficiency

Doc. Control No.

Unclassified

Ageing - Computer Modelling of MWD

- Emsley et al (Surrey) have used modelling codes to predict how cellulose MWD might change as the material ages
 - technique can distinguish between random and systematic degradation processes
- We are applying these techniques to the degradation of nitrocellulose
 - early indication that nitrocellulose degrades by a nonrandom chain scission reaction
 - "systematic weaknesses" preset in pristine nitrocellulose
 - does this account for the ultracentrifuge results...?

Doc. Control No.

Unclassified

XXX/000/00

Unclassified

Random vs. Systematic Scission

Cellulose - ageing at 120°C in air

- Cellulose depolymerisation,
- Drs Brendan Howlin & Alan Emsley, Surrey University

Computer simulation (repetitive random model)

Iterative computer simulation can be compared with experimental data

→ cellulose scission is non-random

Doc. Control No.

Unclassified