

Defence College of Management and Technology

ANALYSIS OF NITROCELLULOSE BY GPC

Dr Philip P Gill Cranfield University pgill.cu@da.mod.uk

2001 Meetings

- 13th Feb 2001 Viscotek Europe, Basingstoke
 - Cranfield Uni, MOD, ICI, Domino, BAE, DERA, AWE, Viscotek

- 15th Nov 2001 AWE/Viscotek, Portland House
 - AWE, BAE, Domino, FOI, ICI Nobel, DOSG, Nottingham Uni, Qinetiq, Cranfield Uni, Viscotek

Summary 2001 Meetings

Problems

- Polystyrene calibration problems (relative)
- Concentration effects
- Solvation effects
 - ".....random number generators" (Sloan -2001)
- Fast eluting peaks/ pre-peaks
- Non-linearity of the Mark-Houwink-Sakurada Plot

GPC/SEC

Concentration effects (100µI)

Concentration effects (0.2mg)

Concentration effects (0.2mg)

Concentration effects (0.2mg)

Concentration Effects of Nitrocellulose

- PS Calibration any result possible
 - Vary Concentration
 - Vary Injection Volume
- Light Scattering Data
 - Independent of Concentration
 - & SEC effects

Concentration effects (Light Scattering Data)

Solvation effects

Siochi & Ward (1989)

Solvation effects

Fast eluting peaks/ pre-peaks

FIG. 16. Output from GPC/LALLS analysis of cellulose nitrate [21].

- Greater response with LS
 - Low concentration
 - Large Size
- Incompletely nitrated materials aggregated together?

Apparent High Mass pre-peak

Follows same solvation effect as main peak

Follows same solvation effect as main peak

Very different Mark-Houwink-Sakurada Plots

Mark-Houwink-Sakurada equation

$$[\eta] = kM_{v}^{a}$$

- $[\eta]$ = intrinsic viscosity
- k = constant
- M_v = experimental viscosity average molecular weight
- a = scalar which relates to the "stiffness" of the polymer chains

• Pre Peak a= 1.2

• Main Peak a= 0.68

a = 0 (hard spheres)

a = 1 (semi coils)

a = 2 (rigid rods)

Solvation Effects & MHS plots

Current Reproducibility (AWE & Cranfield Uni)

Instrument	Mn (daltons)	p.d.
Waters (auto)	202000	3.0
Viscotek 250 (auto)	214000	3.3
Viscotek 250 (manual)	192000	3.7
Viscotek TDA (Auto)	179000	4.8
Viscotek TDA (manual)	172000	4.8
Wyatt (manual)	210000	1.3
Average <i>Mn</i> = 195000 (±10%)		

Summary 2001

Suggested Further experimentation

- MHS Plots
 - Solvation effects/Pre-peak
- Temperature effects
 - Higher Temperature Decreases % Pre-peak
- Varying the solvent
 - Different amounts of Stabiliser (BHT) effects Solvation & Prepeaks

Standard GPC conditions

- Sample concentration of **0.15% (w/v) in THF** (GPC grade, stabilised with 250ppm BHT), with periodic shaking 7 days. **Injection Volume 100μl**.
- Mobile phase of stabilised (250ppm BHT) THF (1 ml/min)
- Three Polymer Labs PLgel 10μl Mixed Phase B (300x7.5mm) columns & a pre column. Column temperature 35°C
- A Viscotek (VE 1121) GPC solvent pump, Kontron (DEG-104) degasser and a Waters 717plus auto sampler.
- Triple detector system (SEC3):
 - Light Scattering: Wyatt Technology DAWN® HELEOS™
 - Viscometer: Wyatt Technology ViscoStar™
 - Refractive Index: Waters 2410
- A 10 point PS EasiCal calibration (Mp) range 580-7,500,000 daltons.

Acknowledgements

AWE – Deacon, Macdonald, Garman

• TES-DOSG – Baker, Turner

ROXEL – Sloan, Fossey

 Cranfield University – Bellerby, Moniruzzaman, Reid, Perez