Defence Ordnance Safety Group – Science & Technology

Qualification of Cotton Linters UK Joint Industry & MoD Approach

Christopher Hollands & Nigel Rutter DOSG ST1 Energetic Material Scientists

Qualification of Cotton Linters – UK Joint Industry & Ministry of Defence Approach – May 2016

Defence Equipment and Support

Presentation Overview

- Sources of Cellulose for propellant manufacture
- Linter production
- Why is understanding NC so important?
- Joint UK MoD and Industry approach to characterise and benchmark alternative suppliers
- Changes in cellulose supplier source requiring re-qualification of existing propellant formulations
- Highlighting the successful re-qualification of various propellant formulations in UK service
- Questions and short discussion period open to delegates

Source of Cellulose

- Multiple sources of cellulose are available however Propellant manufacture tends towards two primary sources:
- Cotton Linters:
- Cotton Linters a commodity material produced across Globe and traded on World Markets
 - European source of choice
 - High grade material ~94% cellulose content
 - Physical form can be as a sheet or flock
- Wood Pulp:
 - Predominantly used in North America
 - Low grade source ~50% cellulose content

Source of Cellulose

- Diagram shows the cotton plant and the fluffy white exterior known as the lint is what is used in the textile business
- The material surrounding the see is the Cotton Linter
- Natural product with variation in composition

Cotton Linter Processing

Defence Equipment and Support

Why is Understanding Nitrocellulose so Important?

- Ballistic properties (burning rate, temperature coefficient)
- Chemical stability and service life
- Design choice chemical energy available can be 'tuned'
- Provides mechanical strength and necessary resilience (Handling & firing over temperature range)
- Bonding can bond DB RM propellants to the motor casing.
- Provides confidence in final Propellant properties

UK MoD Prime Requirements:

- Continuity of Supply of Nitrocellulose Propellants
- Maintain Consistency of Propellant Quality
- Consistent Performance Levels
- Safety Characteristics
- Long Service Life
- Propellant Supply Chain therefore needs to be as 'stable' as possible.

Background to Changes in Cellulose Source

- Due to requirement for ammunition UK MOD had no option but to undertake a number of changes in cellulose / nitrocellulose sources
- Process of manufacturing NC then conversion to Paste and then into Propellant
- Followed by the Material Qualification and Type Qualification (High cost and time)
- Long Re-Qualification programmes increase the risk of further material changes during development

• UK Cellulose Supply Background since 1990

- Holden Vale Linters, Dumfries NC
- Holden Vale Linters, UK Manufactured NC
- NATO Source 1 Linters, UK Manufactured NC
- NATO Source 1 Linters, Manufacturer A NC
- NATO Source 2 Linters, Manufacturer A NC
- Non-NATO Source 1 Linter, Manufacturer A NC
- Non-NATO Source 2 Linter, Manufacturer A NC

• <u>2001: Initial Process Changes:</u>

- NATO Source 1 (UK Manufacture) to NATO Source 1 (Manufacturer A)
- Comparable manufacturing results using NATO Source 1 linter feedstock reported.

Property	Specification		NATO Source 1	NATO Source 1	
	Min	Max	UK Manufacture	Manufacturer A	
Settling test (cm)		95	90	87	
Nitrogen (%)	12.35	12.75	12.68	12.68	
Mineral matter (%)		0.8	0.43	0.47	
Alkalinity (%)	0.2	0.5	0.54	0.40	
E/A Solubility (%)	95		99.4	99.4	
Acetone Insol (%)		0.50	0.15	<0.10	
Sulphate (%)		0.10	<0.05	<0.01	
B/J test (mgN/g)		1.25	0.84	1.06	
Abel HT (mins)	10		11	15	
Viscosity (p)	5	10	5.2	7.7	

• NC/NG Paste was converted in to propellant by Manufacturer C

Propellant underwent the following analysis.

- Mechanical Properties
- Chemical Stability Testing
- Small Scale Hazard Testing
- Successful change programme for UK MoD and Industry.
- Propellant formally UK National Authority Qualified.

• 2009: First Material Changes:

- NATO Source 1 (Manufacturer A) to NATO Source 2 (Manufacturer A) following the withdrawal of NATO Source 1 from the market
- NATO Source 2: Several batches of Manufacturer A NC converted to NC/NG paste by Manufacturer B

NC Туре	Molecular weight	Molecular No	Viscosity (Poise)
NATO Source 2	454946	3.4	14.0
NATO Source 1	473796	4.5	17.0

Paste Type	BAM Impact LIE (Kg.cm)	BAM Friction LL (N)		
Α	>320	157		
В	>320	157		
C	>320	158		

NC/NG Paste converted in to three types of propellant by Manufacturer C

Propellant underwent the following analysis:

- Mechanical Properties Analysis
- Chemical Stability Testing
- Small Scale Hazard Testing
- Propellants produced from NC/NG pastes incorporating NC produced from NATO Source 2 linters exhibited acceptable chemical, ballistic and rheological properties.
- A further successful change programme reported for UK MoD and Industry.
- Propellant formally UK National Authority Qualified.

2009: Further Material Changes

- NATO Source 2 (Manufacturer A) to Non-NATO Source 1 linters (Manufacturer A)
- Non-NATO Source 1: Batch of Manufacturer A NC converted to NC/NG paste by Manufacturer B
- An increased level of NC analysis was conducted:

Requirement	Min	Max	Result
Nitrogen (%)	12.1	12.3	12.24
Mineral matter (%)		0.8	0.3
Settling test (cm)		75	63
Alkalinity as CaCO ₃ % m/m	0.2	0.4	0.2
Insoluble in acetone % m/m		0.5	0.02
Ether / alcohol solubility %		95	99.7
m/m			
Sulfate as H2SO4 % m/m		0.1	0.03
Stability at 132°C mg/g		1.25	1.13
Heat test 77°C minutes	10		14-16

• Mw Comparison reported for the two sources of cellulose:

NC Туре	Molecular weight	Polydispersity Mw/Mn
NATO Source 2	441214	4.01
Non-NATO Source 1	431339	4.01

• NC/NG Paste converted in to two types of propellant by Manufacturer C

Propellant underwent the following analysis:

- Mechanical Properties Analysis
- Chemical Stability Testing
- Small Scale Hazard Testing

- Propellant test results fully met specification.
- Propellants produced from NC/NG pastes incorporating NC produced from Non-NATO Source 1 linters exhibited acceptable chemical, ballistic, rheological and explosive hazard properties.
- Successful change programme for UK MoD and Industry.
- Propellant formally UK National Authority Qualified.

• <u>2011: Further Material Changes:</u>

- Qualification work covering a range of cotton linters from NATO Source 1 to Non-NATO Source 2
 processed by Manufacturer A
- Manufacturer A NC converted to NC/NG Paste by Manufacturer B and then further processed to various types of propellant by two different European manufacturers.
- Comprehensive series of reports issues by each manufacture covering:
 - Cotton Linter Analysis
 - NC Analysis
 - Propellant Analysis

Analytical test		NATO Source 1a	NATO Source 1b	NATO Source 2	Non-NATO Source	Non-NATO Source
Alpha-Cellulose	min %	99	99	98.5	98.4- 99.7	98.3 – 99.5
Viscosity	centipoise	40-60	70-110	43-53	-	-
Viscosity ISO 5351	ml/g	-	-	737	753	765
DCM Extract	max %	0.3	0.1	0.025	0.06 - 0.14	0.10 - 0.13
Ash	max %	0.25	0.25	0.1	0.06 - 0.13	0.06 - 0.13
Chloride	max ppm	60	60	60	10 - 40	10 - 20
Solubility L 7.14 NaOH	Sol ⁿ max %	3.5	3.5	3.5	1.4 - 2.4	1.4 – 2.9
Moisture	%	4.5 – 8.5	4.5 – 7.5	5 – 8	4.7 – 7.1	5.5 - 6.3
Degree of Polymerisation		-	-	1090	1121 - 1179	1032 - 1156

Bale Cotton linter cellulose analysis results

• NC Analysis data across range of Cotton Linter Stock

Components	Typical NC Spec	NATO Source 1	NATO Source 2	Non-NATO Source	Non-NATO Source
% Nitrogen	12.45-12.75	12.54 – 12.66	12.64	12.66	12.66
Viscosity	55-85	66-79	78.5	78	78
Stability B& J Test mg NO/g	1.25 max	0.99 -1.2	1.23	1.18	1.17
Abel Heat Test @ 77 °C (mins)	>10	12 -21	18	19-20	13-14
Ether Alcohol Solubility %	95 min	98.8 -99.8	99.3	99.4	98
Molecular Weight (Mw) X1000	-	835*	875* 632**	677**	640**
Polydispersity Index (Mw/Mn)	-	4.08*	3.96* 3.34**	3.19**	3.38**

Note: Mw and Polydispersity Index results:* from 2007 are comparable while the results** from 2010 are comparable. Differences are due to significant changes in analytical techniques following the the STANAG 4178 (Edition 2) round robin test organized by UK.

- Analysis of Cotton Linters: No significant difference in the chemical properties.
- Analysis of the Nitrocellulose: Complied with the requirements of the specification
- Chemical Analysis of the Propellants: Manufactured propellants fully met specification
- Physical Properties:
- Dimensional analyses:
- Density and Tensile strength:
- Closed Vessel testing:

- Stability Testing: Met criteria for a 5 year shelf life under normal magazine storage conditions.
- Heat Flow Calorimetry: 10 year life for all propellants tested at 80°C for 10.6 days
- EMTAP Sensitiveness Testing: All propellants tested demonstrated that the new supply of Non NATO cotton linters did not significantly change the sensitivity of the propellants.
- **Gun Firings:** Trial results indicated acceptable ballistic levels relative to control samples
- All propellants made with Nitrocellulose from Non-NATO sourced linters were not significantly different from propellants made with NATO Source Linters, and were recommended as being safe and suitable for UK service use.

<u>Conclusions</u>

- Various Propellant types have proven tolerant to linter source changes.
- Lower Performance, Cartridge load propellants have also shown tolerance to source changes.
- MoD overview of the reported data from the Linter Stock and Process Changes since 2001 demonstrate that throughout:
 - Nitrocellulose produced has complied with specification.
 - Propellants manufactured have fully complied with Chemical and Physical Properties and met Manufacturers Specifications.
 - Propellants have fully met the criteria for UK National Authority Qualification.

- Further Conclusions
- No real predictive capability to understand how Cellulose source / type will effect Propellant properties
- While these programmes were entirely successful, based largely on a trial and error approach
- Better understanding of cellulose and NC properties will allow for a more targeted and scientific approach to material supplier change in the future
- All work now successfully completed leading to the UK Qualification of a number of propellant formulations
- Strategy worked with few problems due to the expert knowledge of the manufacturers
- But, can we take this approach again? Given it may take 5 years work to take to completion

What's the Alternative to Understanding the Science?

Defence Equipment and Support

Thank you for your attention

Any questions?

Defence Equipment and Support