Monte Carlo Simulation for a quantitative assessment of the likelihood of predicted strength, or molecular weight, changes with explosive age.

> Dr Claire Leppard AWE. Explosive Materials

Development of Ageing Model

Nitrocellulose based energetic material

- Number Average Molecular Weight
- Flexure Strength

Samples – unaged, thermally aged and real-time aged

•Deacon, Leppard, Powell, Development of a Mechanical Properties Kinetic Model for ageing of a UK PBX, Proc 35th Int Ann Conf Energe. Mat. ICT. 2004

Mechanical Capabilities

Mechanical tester

- Compression ('squashing')
- Tension ('pulling')
- Flexure ('bending')
- Creep testing
- Compression to Tension
- Fracture testing
- High strain rate testing
- Ultrasonic testing
- Extensometery

Relationship between Mn and flexure strength

Ageing Model Development

In k versus 1/T for M_n data

$$\ln k = \ln A - \frac{E}{RT}$$

$$\frac{1}{P_t} = \frac{1}{P_0} + k.t$$

Where P is property, M_n or flexure strength

Mean Rate of Degradation

Knowing

1) the rate constant k,

at a given temperature

2) the unaged, or starting position

•Deacon, Leppard, Powell, Energetic Materials, 35th Int Annual Conference of ICT Proceedings, 2004, P141.

Mean rate of degradationOuter limits not strictly correct

Monte Carlo Simulation

 No simple mathematical solution to generate the PDF for property, P versus time, t

 Use a statistical sampling method to combine the PDFs for P_o and Ink

Two independent analyses carried out

MC - Random Numbers

- Random number generation for P_o, from the given mean and s.dev (assumed normal distribution).
- Random number generation for P_o, from raw data
- Random number generation for ln k, from mean lnk and s.dev, converted to k.

Product is a set of random numbers for P_t versus t. Statistical software allows the PDF to be described.

Monte Carlo - Results

•Comparing 2 independent analyses

Monte Carlo - Results

•Unaged flexure strength PDF and a fitted normal distn.

•PDF changes with age – initial signature is lost with time

Conclusions

 Monte Carlo simulation has provided a quantitative assessment of the likelihood of predictions with explosive age

 The MC analysis has shown early properties are most sensitive to the unaged distribution

 At extended times the MC prediction is less sensitive to the unaged data and more sensitive to the distribution function for the rate data

Acknowledgements

- Keith Macknelly distinguished scientist AWE
- Mechanical Properties Team AWE