

Determination of the Activation Energy of Nitrocellulose Decomposition from UV-visible Spectroscopy of Thin Films

By
M Moniruzzaman
&
J M Bellerby*

Department of Materials and Applied Science, Cranfield University, Defence Academy of the UK, DCMT, Shrivenham, Swindon, SN6 8LA, UK

Introduction

- NC decomposes to give NO_x
- Causes autocatalysis
- Stabiliser added to prevent autocatalysis
- NC breakdown is usually monitored in a destructive way
 - By SEC, HPLC, DMA, TGA etc.

Nitrocellulose Structure

- Fully nitrated NC has 3 nitrate ester groups
 - Primary group at 6 position and two secondary groups at 2 and 3 positions
 - Reactivity: $3 ONO_2 > 2 ONO_2 > 6 ONO_2$

Challenges

- Finding suitable dyes that act as stabilisers
- Following NC decomposition from the colour change of the dye
- Minimising the frequency of surveillance testing of NC

Aims

- To develop a technique for non-destructive monitoring of NC decomposition
- To validate the technique for monitoring NC decomposition in thin films
- To calculate activation energies associated with the breakdown of the three –ONO₂ groups

Conventional and Proposed stabilisers

- Conventional stabiliser
 - a. Secondary amines
 - b. Urea derivatives
- Anthraquinone dye stabilisers
 - UV-vis detects small colour change from dye/NOx reaction
 - Dye products do not absorb within the spectral region of parent dye

Experimental

- Preparation of NC films (12 % N)
 - Preparation of solution
 - Dye 2% w/w of NC
 - DOP 5% w/w of NC
 - Casting films on glass slides
- Drying
 - Ambient temperature
 - Under vacuum
- Aging
 - Aged at 40 °C, 51 °C, 60 °C, 70 °C

UV-visible measurements

- Zeiss, BLX 500/4 with a xenon flash lamp.
- Modified sample holder
- Spectra were taken at a particular position on aged and unaged films
- Multiple measurements on each film

Results

Preparation of films

- Slow drying avoids the formation of rough surfaces
- No significant defects were observed
- Uniform thicknesses and homogeneous dye distribution
- Thickness ~ 40-50 μm

UV-visible spectra of an aged and unaged film with SB59 dye

Spectra taken periodically during aging at 70°C

- Dye depletion over 268 hours
 - ~ 81% at 70°C
 - ~ 60% at 60°C
 - ~ 43% at 51°C
 - ~ 15% at 40°C

Rates of reaction at 40 - 70 °C

- 1st order plots are not single straight lines
- 3 Linear regions are observed

1st order reaction rates at 51 °C

- Absorbances at 600 nm were used to build plots
- Each linear region is thought to correspond to the breakdown of a different nitrate ester group (at positions 2, 3 and 6)

A plot of ln(A₀/A_t) vs aging time

E_a for NC decomposition

- Activation energy for the –ONO₂ decomposition
 - 141 kJmol⁻¹ position 3
 - 141 kJmol⁻¹ position 2
 - 147 kJmol⁻¹ position 6

Arrhenius plots

Colour change of SB59 films

- Virgin films were blue
- Changed to red upon aging
- Colour change is attributed to the formation of dye derivatives
- Colour change is associated with the condition of NC

a- unaged film

b- aged film

Cranfield

Conclusion-1

- Thin films of uniform thickness and homogeneous dye distribution were made
- An anthraquinone dye was the stabiliser
- UV-vis absorption spectroscopy was used to follow NC decomposition
- Daughter products of SB59 dye showed no absorption in the region of the parent dye

Conclusion-2

- Absorbance data fits three straight lines
- Three rate constants corresponding to three –ONO₂ decompositions were found
- Activation energy for each –ONO₂ group loss was determined

Acknowledgement

- This work was carried out under the remit of TTI work funded by DOSG
- We thank DOSG for their financial support
- We are also grateful to our colleagues for their support in various aspects of the project

Kinetics of SB59 and DAAQ dyes

- SB59 depletion was ~7 times faster than DAAQ which is a primary amine
- E_a from the first rate data of DAAQ work was 42 kJ/mol
- It corresponds to literature value of activation energy for NO_x desorption
- SB59 failed to detect E_a for NO_x desorption

