

Influence of the Chemical Composition of Propellants on Microcalorimetric Measurements

Laurence Jeunieau, Michel H. Lefebvre Ecole Royale Militaire, Belgium Pierre Guillaume PB Clermont SA, Belgium

Outline

- Introduction
- Aim
- Kinetic analysis
- Method
- Investigated propellants
- Results
- HFC measurements
- Kinetic parameters
- Simulation
- Simulation of a propellant using kinetic parameters from a similar propellant
- Conclusion

Introduction: Microcalorimetry

- Measurement of the beginning of the decomposition process with high precision $(0\% < \alpha < 5\%)$
- Use to assess the stability • of propellant (Stanag 4582)

Aim

HFC measurements at minimum three different temperatures are time consuming

Kinetic parameters (Ea, A)

Is it reasonable to perform simulation for a propellant using kinetic parameters from a similar propellant ?

Principle

Calculation based on the isoconversional principle of Friedman:

- Reaction rate at constant reaction progress α is only function of the temperature.

$$\ln\left(\frac{d\alpha}{dt_{\alpha}}\right) = \ln\left\{A_{\alpha}f(\alpha)\right\} - \frac{E_{\alpha}}{R}\frac{1}{T_{\alpha}}$$

- Calculation performed with a software from AKTS

Principle

Measurement at at least three different temperatures

Principle All the curves must be integrated to the same energy values

Calculation of the kinetic factors

 \Rightarrow Possibility to simulate the measured curves and to do prediction

PB

Simulation

PB

Predictions

Predictions

What happens if a propellant stays 10 years in Malaysia ?

Use of a standard weather temperature profile

Predictions

Aim

HFC measurements at minimum three different temperatures are time consuming

Kinetic parameters (Ea, A)

Is it reasonable to perform simulation for a propellant using kinetic parameters from a similar propellant ?

Method

- Determination of kinetic parameters from propellants having different contents in nitroglycerin
- Simulation of a propellant aged at different conditions using parameters from a similar propellant

PR

Investigated propellants

	%Ngl	%DPA	%N-NO-DPA [*]	%DBP **	Shape
Propellant A	11.1	0.65	0.54	0	spherical
Propellant B	11.0	0.64	0.54	0	flattened
Propellant C	10.5	0.60	0.51	4.6	flattened
Propellant D	10.6	0.65	0.41	4.8	flattened
Propellant E	19.2	0.49	0.46	5.1	flattened
Propellant F	25.5	0.45	0.49	0	flattened
Propellant G	41.6	0.25	0.59	0	flattened

For propellant containing DPA: relation between signal shape and stabilizer concentration

Laboratory for Energetic Materials- R.M.A

Propellant containing about 10% of nitroglycerin

Propellant containing different contents in nitroglycerin

Result: Kinetic parameters

Result: Simulation

30 °C

80 °C

Propellant aged at different conditions

Limitation: no measurement of this propellant before ageing

Ageing time	%Ngl	%DPA	%N-NO-DPA	%DBP
t_0	19.0	0.32	0.60	5.9
$t_0 + 7$ years at $22^{\circ}C \pm 2^{\circ}C$	19.0	0.08	0.64	5.9
$t_0 + 7$ years in Malaysia	19.0	0.1	0.68	5.9
$t_0 + 19$ years at $22^{\circ}C \pm 2^{\circ}C$	19.0	0.10	0.52	5.9
$t_o + 7$ years at $22^{\circ}C \pm 2^{\circ}C + 16h30$ at	19.0	0.08	0.64	5.9
80°C				

Available results

Available results

Determination of the parameters used in the simulation

	% Ngl	% DPA	% N-NO-DPA	% DBP
$t_0 + 7$ years at $22^{\circ}C \pm 2^{\circ}C$	19.0	0.08	0.64	5.9
Propellant E	19.2	0.49	0.46	5.1

 \Rightarrow Use of propellant E for the simulation but need to artificially aged this propellant

Determination of the parameters used in the simulation

Simulations

Simulations

- Good correlation of the position of the second maximum
- Less satisfactory correlation of the signal height
- All the simulated curves have lower height than the experimental one
- Discrepancies could arise out of a difference in the propellant moisture

Conclusion

- IFM
- HFC measurements of propellant with different nitroglycerin contents

- The shape of the curve depends on the DBP content
- Kinetics parameters are similar for a nitroglycerin content between 10% and 19%
- Difference of kinetic parameters are observed for higher nitroglycerin content (25.5% and 41.6%)
- Simulation of a propellant using kinetic parameters from a similar propellant
- Good correlation between the experimental and simulated curves concerning the position of the second maximum
- Less satisfactory correlation of the signal amplitude
- The differences between the experimental and simulated curve could come from a difference in moisture content between the samples.