

Nitrocellulose Characterisation: Benefits of International Collaboration

Dr Paul Deacon paul.deacon@awe.co.uk www.awe.co.uk

Doc Control Number: AWE/CRD11/PD10/0156

Scope

- Brief review of Nitrocellulose Workshops 1-3
- Summarise achievements
- Introduce the SEC round robin

Previous Workshops

- Meeting 1: February 2001, 19 delegates
 - UK only
 - Viscotek organised & hosted (with AWE input)
 - SEC only
- Topics included:
 - Requirement for robust analysis methods
 - Requirement for knowledge capture
 - SEC data neither repeatable or reproducible
 - Sample dissolution issues noted

Previous Workshops

- Meeting 2: November 2001, 23 delegates
 - UK & Sweden (FOI)
 - AWE organised & hosted event
 - Predominantly SEC and stability
- Topics included:
 - Molecular mass analysis by SEC and ultra-centrifugation
 - Effects of NC source on propellant processing
 - Surveillance of NC-propellants
 - Development of shared SEC experiments

Shared Experiments

- The second meeting yielded a series of shared experiments:
 - Column packing (silica)
 - Eluting solvent (e.g. ethylacetate)
 - Column temperature
 - Sample concentration
 - Optimise dissolution time
 - Hyphenated SEC-FTIR (entire peak is nitrocellullose)
 - Adoption of a 'standard material' for an intra-laboratory baseline

Previous Workshops

- Meeting 3: April 2007, 38 delegates
 - Multi-national (9 Nations including USA & RSA)
 - AWE organised & hosted at Aldermaston site
 - Themed: Supply, Ageing, Characterisation

Meeting 3

Meeting 3 Overview

- 3 sessions, each with an invited speaker
 - Neil Turner, DOSG
 - Ruth Sopranetti, Nitrochemie Wimmis
 - Manfred Bohn, Fraunhofer ICT
- 15 presentations were given
- Electronic proceedings issued & recorded with British Library*
- The concept of an SEC round robin was raised at the closing discussion

^{*} C. Leppard; Nitrocellulose: Supply, Ageing, Characterisation; Conf. Proc.; 2007

Meeting 3 – Example Topics

- Issues Surrounding Qualification and Certification of munitions with Nitrocellulose*
 - Neil Turner, Defence Ordnance Safety Group, UK
- Survey of Standard Nitrocellulose Testing Methods and the Abel Heat Test*
 - Ruth Sopranetti, Nitrochemie Wimmis, CH
- Nitrocellulose-based Energetic Materials Stability, Decomposition, and Ageing*
 - Dr Manfred A. Bohn, Fraunhofer-Institut für Chemische Technologie (ICT), Germany
- Rocket Propellant Characteristics as Influenced by Cellulose Type and Source
 - Martin Sloan, Roxel Rocket Motors, UK
- Nitrocellulose Characterisation to Support High Explosive and Propellant Life Assessment
 - Dr Paul Deacon, AWE, UK
- Characterisation of Plasticised Nitrocellulose using Pulsed Field Gradient (PFG) NMR and Rheology
 - Jessica Gwyther, Bristol University, UK
- Kinetics of Nitrocellulose Ageing
 - Dr Alan Burnham, Lawrence Livermore National Laboratory, USA

* Invited Speaker

Current Workshop

Current Workshop

- Meeting 4
 - Multi-national
 - Organised by Cranfield University
 - Supported by AWE and DOSG (UK MoD)
- Various themes:
 - SEC analysis (including update on round robin)
 - Development of STANAG 4178 (Ed. 2)
 - Chemical and physical characterisation
 - Ageing and stability

SEC Progress since 2007

 NATO STANAG 4178 (Ed. 2) currently undergoing ratification

- "Test Procedures for Assessing the Quality of Deliveries of Nitrocellulose from One NATO Nation to Another"
- Ed. 2 includes an SEC method
 - Small sub-group formed to finalise experimental details
- Non-mandatory test intended to aid overall characterisation of nitrocellulose

SEC Discussion & Working Group (DWG)

- Formed to finalise SEC method in STANAG 4178 (Ed. 2)
 - Nitrochemie, AWE, ICT, TNO (CH, UK, D, N)
- Several meetings
 - February 2008, Nitrochemie
 - February 2009, Shrivenham
 - April 2009, Nitrochemie
 - May 2008/2009, Presentations to NATO AC/326 SG/1 CNG
- Several publications from the DWG
 - ICT conference 2008; P68, P69, P70
 - ICT conference 2009; P80, P81

STANAG 4178 (Ed. 2) SEC Method

- Use a recognised drying method
 - e.g. 60 ℃ for 2 hours
- Prepare solutions in HPLC-grade THF
 - 1.5 mg cm⁻³
 - BHT < 250 ppm
 - 7-days pseudo-static or 30 minutes rapid stirring
- 10 µm mixed porosity columns PS-DVB at 35 ℃
 - Calibrate with narrow polystyrene standards
- Concentration detector (RI, UV-Vis)

Excellent SEC Repeatability

Experiment	M _n (dalton)	M _w (dalton)	Polydispersity
	(± 1 σ)	(± 1 σ)	(± 1 σ)
1	195,200	651,100	3.34
(20 injections)	4,200	10,900	0.09
	(2.2 %)	(1.7 %)	
2	194,500	653,700	3.37
(20 injections)	4,200	12,600	0.17
	(6.2 %)	(1.9 %)	
3	205,100	676,300	3.30
(20 injections)	7,500	6,900	0.11
	(3.7 %)	(1.0 %)	
4	190,800	625,400	3.29
(20 injections)	9,800	6,800	0.18
	(5.1 %)	(1.1 %)	
5	200,600	649,200	3.24
(20 injections)	7,400	19,200	0.07
	(3.7 %)	(3.0 %)	
Average	197,300 ± 9,800	651,100 ± 20,200	3.31 ± 0.13
(of 100 injections)	(5.0 %)	(3.1 %)	(4.1 %)

SEC Round Robin

- A truly international collaborative effort
 - 10 organisations, 9 Nations
- SEC columns & polystyrene standards provided by AWE
- 4 nitrocellulose samples provided by Nitrochemie
 - Identities not disclosed to facilitate 'blind test'
 - All results returned promptly thank you!
- Coordinated by Cranfield University
- Update at 40th Conf. Fraunhofer ICT in 2009#

P. Deacon et al; Proc. 40th Int. Conf. Fraunhofer ICT; P81 - 1 to 14; 2009

SEC Round Robin

- Nitrocellulose samples were ranked in the same order by each laboratory
- For both M_n and M_w
 - 12.71 % nitrogen >
 - 12.15 % nitrogen >
 - 13.55 % nitrogen ~
 - 11.69 % nitrogen

What Have we Achieved so Far?

- People were working in isolation
- An international group of experts are now working together
- Nitrocellulose SEC analysis a challenging area
 - has progressed well
 - Incorporated into STANAG 4178 (Ed. 2)
 - The SEC round robin has been completed
 - Parameters that <u>must</u> be controlled are now better understood (e.g. drying conditions, dissolution time)

What can we Still Achieve?

- Nitrocellulose variability
 - Cotton vs. wood pulp, bleached vs. unbleached etc
 - Security of supply
- Nitrocellulose stability
 - Still much to learn
 - Mechanisms, dependence on local environment
- SEC analysis of nitrocellulose-based formulations
 - Propellants, high explosives
- Experts combined knowledge to tackle these and other – issues (leverage)