Electric vehicle uptake in New Zealand: A spatio-temporal analysis*

Electric vehicles, urban development and energy infrastructure: comparative perspectives from the UK and South Korea Workshop

Dr Selena Sheng and Dr Le Wen

Energy Centre, University of Auckland Business School

* This presentation is largely based on Sheng, M. S., Wen, L., Sharp, B., Du, B., Ranjitkar, P., & Wilson, D. (2022). A spatio-temporal approach to electric vehicle uptake: Evidence from New Zealand. *Transportation Research Part D: Transport and Environment*, 105, 103256. doi:10.1016/j.trd.2022.103256

Outline

- Overview of New Zealand's emission profile, fleet status, and current EV programs and public charging facilities
- Hypothesis, data and variables
- Methodology
- Empirical results and robustness check
- Conclusion and policy implication

BUSINESS SCHOOL

Overview

- Transport sector:
 - a main component of CO2 emissions
- Critical long-term challenge worldwide:
 - 20% of global energy
 - > One-quarter of the overall energy-related CO2
 - Road transport: three-quarters of total transport emissions
- NZ's unique emissions profile:
 - NZ's gross GHGs = 80.9 Mt CO2-e in 2019 = 2.2% increase from 2018, increase from road transport
 - Two largest emitters in 2020: Agriculture (50%) & Energy (40%)
 - Road transportation 38% of total emissions from the energy sector

Fleet status

THE UNIVERSITY OF MULTINICERSITY OF THE UNIVERSITY OF MULTINICERSITY OF MULTINICERSIT

- NZ imports all vehicles from overseas
- Pure EVs = the largest share in the vehicle market (Fig. 2)
- Used EVs are more popular compared to new EVs (Fig. 3)

Fig. 2. Electric Vehicle Fleet Statistics, 2016 – 2018 (Vehicle Fleet Statistics, 2019)

Fig. 3. Fleet Composition - 2018 (Vehicle Fleet Statistics, 2019).

Current EV programs

- The Ministry of Transport: EV program in 2016, with the aim to provide a broad set of fiscal initiatives and non-fiscal initiatives
- NZ passed the Climate Change Response (Zero Carbon) Amendment Act bill in 2019
- Govt: Clean Car Package in June 2021. The highlight of this package: postpurchase rebate scheme that applies to both new and used EVs under \$80,000 from July 2021.

Public charging facilities

- > 500 public charging stations,
 no more than 80 km apart
- 252 public DC fast chargers
- Tesla: Superchargers; slower chargers at destinations
- Electricity companies (i.e., Vector)
- Hotels/motels/campgrounds offer charging (Blue Commando plug)
- Wellington City Council:

street pole chargers for residents who only have on-street parks.

SINESS SCHOOL

FNERGY CENTRE

Fig. 4. Current map of ChargeNet chargers in NZ (2022)

Hypotheses

• Hypothesis 1

EV-charging infrastructure in the neighbouring areas has a positive and significant impact on EV uptake.

• Hypothesis 2

Early adoption has an overall positive effect on subsequent technology adoption: the lagged EV adoption has a statistically significant positive/negative value depending on neighbours' perception from observing or communicating with their neighbours who own EVs.

Data

BUSINESS SCHOOL ENERGY CENTRE

Fig. 5. Geographic Distribution of the Data (Authors' own illustration).

Variables

BUSINESS SCHOOL

Fig. 6. Number of EV Adoptions (2020).

Main factors

- Availability of Public chargers (2018 & 2020)
- Distance to CBD
- Transport mode
- Vehicle ownership
- Social and economic factors

Econometric model -1

• The Poisson model states that the probability that the dependent variable Y will be equal to a certain number y is:

$$p(\mathbf{Y} = \mathbf{y}) = \frac{e^{-\mu}\mu^{y}}{y!}$$

Where μ is the intensity or rate parameter:

 $\mu = \exp(\mathbf{x}_i \boldsymbol{\beta})$

• The negative binomial model has a less restrictive property that the variance is not equal to the mean

 $\operatorname{var}(y \mid x) = \mu + \alpha \mu^2$

When $\alpha > 0$, overdispersion. – test if α is significantly different from 0.

BUSINESS SCHOOL

Econometric model -2

• Spatial model

$$Y = X\beta + WX\gamma + \varepsilon$$

• Spatial weight matrix

$$W = \begin{pmatrix} 0 & w_{12} & w_{13} & w_{14} & \dots & w_{1n} \\ w_{21} & 0 & w_{23} & w_{24} & \dots & w_{2n} \\ w_{31} & w_{32} & 0 & w_{34} & \dots & w_{3n} \\ w_{41} & w_{42} & w_{43} & 0 & \dots & w_{4n} \\ \dots & \dots & \dots & \dots & 0 & \dots \\ w_{n1} & w_{n2} & w_{n3} & w_{n4} & \dots & 0 \end{pmatrix}$$

W - a n x n matrix.

The non-diagonal elements w_{ij} reflect the spatial influence of area *i* on area *j*. The diagonal elements w_{ij} are set to zero to exclude self-influence.

$$\mu_i^{**} = \exp(EV18_i\gamma_{ev18} + WEV18_i\theta_{ev18} + CHAR_i\gamma_{char} + WCHAR_i\theta_{char} + x_i\beta + \nu_i)$$

Empirical results

BUSINESS SCHOOL ENERGY CENTRE

	Model 1 Non-spatial model		Model 2 Spatial model	
VARIABLES	Coefficient	Incidence rate (IRR)	Coefficient	Incidence rate (IRR)
Main factors				
<u>Hypothesis (H1):</u>				
Public chargers	0.133	1.143	0.215	1.240
	(0.179)		(0.184)	
WX-Public chargers	/		2.706**	14.977
	/		(1.380)	
<u>Hypothesis (H2):</u>				
Total EV in 2018	0.034***	1.034	0.033***	1.034
	(0.005)		(0.009)	
WX-Total EV in 2018	/		-0.060*	0.942
	/		(0.034)	
Distance to CBD	-0.013***	0.987	-0.028***	0.972
	(0.005)		(0.010)	
Two vehicles	0.005**	1.005	0.004**	1.004
	(0.002)		(0.002)	
High qualification	0.030*	1.031	0.031**	1.031
	(0.017)		(0.015)	
Other control variables	Yes		Yes	

Robustness check

BUSINESS SCHOOL

Model 4

225

THE UNIVERSITY OF

	(band=5km)		(band=100km)	
VARIABLES	Coefficient	Incidence rate (IRR)	Coefficient	Incidence rate (IRR)
Main factors				
<u>Hypothesis (H1):</u>				
Public chargers	0.157	1.153	0.273	1.314
	(0.185)		(0.183)	
WX-Public chargers	0.139**	1.213	4.310***	74.460
	(0.070)		(1.232)	
<u>Hypothesis (H2):</u>				
Total EV in 2018	0.031***	1.032	0.033***	1.034
	(0.005)		(0.009)	
WX-Total EV in 2018	-0.005*	0.993	-0.081**	0.922
	(0.001)		(0.032)	
Distance to CBD	-0.020***	0.982	-0.048***	0.953
	(0.007)		(0.011)	
Two vehicles	0.004*	1.004	0.004**	1.004
	(0.002)		(0.002)	
High qualification	0.041***	1.037	0.031**	1.023
	(0.015)		(0.015)	
Other control variables	Yes		Yes	

Model 3

Conclusion and policy implications

- Better designed public charging infrastructure
 - public-private partnership model
- Transport planners could tailor incentive programs to target the uptake of EVs by early adopters.
- Numerous policy initiatives exist and span
 - ➢ financial assistance, such as EV subsidies and taxation benefits
 - ➢non-financial opportunities, such as fostering urban charging initiatives
- Behaviour change programs
 - ➢highlighting EV purchase as new social norms
 - ➢ promoting EV ownership benefits
 - combined with other forms of support for home efficiency improvements, such as technology demonstration and related education programs.

Other transport works (2021-2022)

- Majhi, R.C., Ranjitkar, P. & Sheng, M. (2022). Assessment of dynamic wireless charging based electric road system: A case study of Auckland motorway. Sustainable Cities and Society, 84, 104039. <u>https://doi.org/10.1016/j.scs.2022.104039</u>
- 2) Wen, L., Sharp, B., Suomalainen, K., Sheng, M., & Guang, F. (2022). The impact of COVID-19 containment measures on changes in electricity demand. *Sustainable Energy Grids and Networks*, 29, 100571. <u>https://doi.org/10.1016/j.segan.2021.100571</u>
- 3) Suomalainen, K., Wen, L., Sheng, M. & Sharp, B. (2022). Climate change impact on the cost of decarbonisation in a hydro-based power system. *Energy*, 246(1), 123369. <u>https://doi.org/10.1016/j.energy.2022.123369</u>
- 4) Majhi, R.C., Ranjitkar, P. & **Sheng, M.** (2022). Dynamic wireless charging facility allocation on a road network for electric vehicles. *Transportation Research Part D: Transport and Environment* (revised & resubmitted).
- 5) Pan, A. and **Sheng, M**. (2022). The Complementary Duet of Vehicular Diverging: An Experimental Approach. *Case studies on Transport Policy* (under review).
- 6) Sheng, M., Du, B., Sreenivasan, A.V., Raith, A. & Sharp, B. (2022). *Optimal Deployment of Dynamic Wireless Charging Infrastructure for Electric Bus Operation*. Working paper.
- 7) Wen, L., Sheng, M., Suomalainen, K, Sharp, B., Meng, M., Du, B. & Yi, M. (2022). Solar potential and the uptake of Electric Vehicles: Some Evidence from New Zealand. (submitted to *Energy Policy*)
- 8) Guest, W., Lu, C., Zorn, C., Sheng, M. & Wen, L. (2022). Feasibility of Diesel-Hybrid Trucks in New Zealand. Working paper.
- **9)** Sheng, M., Sreenivasan, A.V., Du, B. & Sharp, B. (2021). Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania. *Energy Policy*, 158, 06533. <u>https://doi.org/10.1016/j.enpol.2021.112552</u>

Thank you!

BUSINESS SCHOOL ENERGY CENTRE

Source: The Economist, 2017

