

Belmont Forum Collaborative Research: Management of Disaster Risk and Societal Resilience (MADIS) Design Process for Drought Resilience Indicators Survey

Abdullah Konak

Michael Jacobson

Alina Rodriguez

Penn State

Objective

- Develop an easy-to-use Dashboard application for decision-makers to evaluate drought loss reduction and resilience strategies.
 - Reduce **ambiguity** in the relationship between hazard, vulnerability, and resilience.
 - Better identify the links between hazard, exposure, vulnerability, adaptive capacity, and relevant indicators.

Dependency on agr ×	0 -
Dependency on agriculture for livelihood (%)	
0	16
0.12	
Which coping capacity indicators would you like to use?	
Cultivation of drou ×	0 -
Cultivation of drought-resistant crops (%)	
19	
0	16

Susceptability Score

Country case studies – Morocco, SA and Namibia

Namibian drought policy review progress

- Stakeholder events
- National and 6 regional consultations (1-Drought risk score worldwide 2020, by country*

Search:			Records: 1	3 🗸
	Characteristic	÷	Score	¢
Somalia				5
Zimbabwe				4.72
Djibouti				4.68
Mauritania				4.48
South Africa				4.44
Namibia				4.44

The Forecast-based Financing Southern Africa Project (FbF-SAP): A regional drought scoping study

Indicator Selection & Survey Design Process

Final Evaluation Metrics

scales.

Phase I – Survey

Indicator Relevancy:

Please rate how **relevant** the following indicators are in terms of the information needs of decision-makers for improving drought resilience policies and better managing resources.

Option	Definition					
Low	The indicator is irrelevant to the information needs of decision-makers.					
Medium	The indicator is moderately relevant to the information needs of decision	on-maker	S.			
High	The indicator is highly relevant to the information needs of decision-ma	akers.				
			Releva	Relevancy		
		Low	Medium	High	Don't know	
	age of the contribution of crop and livestock production in the income of der farming	0	0	0	0	
Crop los	s	0	0	0	0	
Percenta	age of drought-resistance crop varieties cultivated	0	0	0	0	
Percenta	age of farmers who use different types of crops	0	0	0	0	
Percenta	age of area protected and designated for the conservation of biodiversity	0	0	0	0	
Use of a	gricultural inputs (e.g., insecticides, pesticides, fertilizer, machinery)	0	0	0	0	
Crop wa	ter use efficiency (WUE)	0	0	0	0	
Degree	of land degradation and desertification	0	0	0	0	