



British High Commission Singapore





# Singapore-UK Jet Zero Workshops

Workshop 1: Sustainable Aviation Fuel

25 March 2024





Research England

#### Before we start...

- No fire alarms expected
- Toilets
- Wifi:

Please join the conversation about today's event on social media:

#UKSingaporeJetZero #UKSGEF ∑ @HyDEXMidlands, @UKinSingapore Linked in HyDEX, UK in Singapore







#### **Programme for today**

| Time         | Agenda                                                                                           |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 10:00-10:30  | Arrival & Reception (coffee/tea/ snacks)                                                         |  |  |  |  |  |
| 10:30-11:00  | Welcome & Introduction: Adrienne Scott Cox (Nature, Climate and Energy Attaché, British High     |  |  |  |  |  |
|              | Commission Singapore)                                                                            |  |  |  |  |  |
| 11:00-11:30  | Welcome and overview, intent of the workshops: Prof. Ron Corstanje (Cranfield University)        |  |  |  |  |  |
|              | UK presentation on SAF: Prof. Kumar Patchigolla (Teesside University), Dr. Ali Nabavi (Cranfield |  |  |  |  |  |
| 11:30 -12:30 | University), Dr. Diganta Das (Loughborough University), Dr. Vinod Kumar (Cranfield University);  |  |  |  |  |  |
|              | Singapore presentation on SAF: Dr Roong Jien Wong (A*Star)                                       |  |  |  |  |  |
| 12:30-13:30  | Lunch & Networking                                                                               |  |  |  |  |  |
| 13:30-14:45  | Roundtable Discussion (All participants)                                                         |  |  |  |  |  |
| 14:45-15:15  | Afternoon refreshments                                                                           |  |  |  |  |  |
| 15:15-15:30  | General feedback and room level discussion (All participants)                                    |  |  |  |  |  |
| 15:30-16:00  | Recap and closure of workshop: Prof. Ron Corstanje (Cranfield University)                        |  |  |  |  |  |



British High Commission Singapore

SGUK



# Singapore UK Jet Zero Workshops

- *Green aviation* is one of the priority sectors identified in the UK-Singapore Green Economy Framework and in the UK Jet Zero strategy.
- Creating collaboration and promotional activities for both UK and Singapore businesses and research communities
- Establish a comprehensive and strategic roadmap for aviation ecosystem decarbonisation









## **Challenges in Aviation Decarbonization**

#### Some Key facts and figures



Aviation's CO<sub>2</sub> emissions make up about 2.5% of global totals, but is potentially much higher due to the non-CO<sub>2</sub> effects



Non-CO<sub>2</sub> impacts contribute twothirds of aviation's net radiative forcing



By 2050, a projected **10 billion** air passengers will travel 22 trillion km annually, generating nearly 2,000 Mt of CO<sub>2</sub>



Cranfield

University

From 2005 to 2019, aviation fuel efficiency improved by ~ 39%, but absolute emissions growth far more than efficiency gains

#### Why is Aviation a difficult sector to decarbonise ?



#### Long replacement time for aeroplane

(commercial aircraft can last between 20 to 30yrs)



**Challenges around** regulatory support



#### Investment required for decarbonisation (e.g., Capital expenditure

is estimated at up to \$1.45

trillion over 30 years)



**Requirement for** global collaboration and coordination



**Bold investment** and breakthroughs required in R&D



Passenger reluctance on the cost of decarbonisation solutions





#### **Solutions for Jet Zero**

Cranfield

University







## Blueprint for Zero Emission Flight <u>and</u> Infrastructure

ŀ,







Department for Transport

**ENABLING** 

JET ZERO

## **Workshop 1: Sustainable Aviation Fuel**





What: Challenges around technology, capacity and capability, the availability of feedstocks and the supply chain system



70%-80% reduction in CO2 emission, up to 100% (well-to-wake)

10%-40% Reduction in Contrail formation (high uncertainty)

"Drop-in" fuel - handled as the conventional aviation fuel (CAF)

Induced Land Use Change emissions

Significantly more expensive than CAF (factor 2-8)

Resource competition with food and animal feed



\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### Workshop 2: Hydrogen







What: Challenges on developing the Hydrogen economy & supply chain for aviation Zero carbon emissions (in flight)



Reduction in climate impact: 75%-90% reduction for H2 fuel cell; 50%-75% reduction for H2 turbine

Improved air quality (NO2 reduction: 100% for fuel cell; 50%-80% for H2 turbine)

Increased contrail coverage



Aircraft, airport and air transport infrastructure redesign

Short-range aircraft (H2 fuel cell)

Cost: Carbon-free H2 production is 3 times CAF



#### **Workshop 3: Policy Ambitions**



SUPPORTED BY THE SGOUK



What: Policy ambitions contrasted onto existing and future SAF and Hydrogen technological capabilities



5 20% in 2030, net zero by 2050

| Regulatory tools                                                                                 | Supply & Demand-side Actions                                                                                                                                                              | Collaborations                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SAF mandates: 2026 -<br>Initial target of 1% SAF<br>usage, over 1% in 2026,<br>and 3-5% by 2030. | Supply-side: Regional SAF<br>feedstock study and SAF<br>production capacity program<br>Demand-side: Corporate<br>Buyers' Club; Offtake<br>Mechanism for SAF; SAF<br>procurement mechanism | International<br>collaboration: "green lanes,<br>SAF experience &<br>knowledge sharing.<br>Industry collaboration:<br>MOU between CAAS and<br>Airbus (SAF & Hydrogen) |  |  |



Net zero domestic and airport (2040)
 Net zero UK (2050)

| Regulatory tools                                                                                                                     | Direct support                                                                                                                                                                                             | Enabling activities                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>SAF mandate: 10% in UK fuel<br/>mix by 2030 (in place by<br/>2025)</li> <li>UK Emission Trading Scheme<br/>(ETS)</li> </ul> | <ul> <li>SAF infrastructure: £180 m<br/>UK SAF industry growth;<br/>£135 m Advanced Fuels Fund</li> <li>R&amp;D: e.g., £12 m UK SAF<br/>clearing house; £400 m<br/>Breakthrough Energy Catalyst</li> </ul> | <ul> <li>Five-year delivery plan</li> <li>Set Emissions reduction<br/>trajectory 35.4 MtCO<sub>2</sub> in<br/>2030, 28.4 MtCO<sub>2</sub> in 2040,<br/>and 19.3 MtCO<sub>2</sub> in 2050</li> </ul> |







## **Capabilities in Cranfield University**

SUPPORTED BY THE SGUK GREEN ECONOMY FRAMEWORK

Airside Hydrogen Production



Hydrogen based aviation



Cranfield

University

Environmentally friendly ways of making crop-based SAF



Mixed food-fuel cropping for SAF production by applying multi-cropping techniques.

Integration of hydrogen and SAF systems in the Cranfield Global Research Airport: Airport of the future

Cranfield's 'Living Laboratory' campus and airport of the future

Reducing the climate impact of aircraft (CO<sub>2</sub> and non-CO<sub>2</sub> emissions)





## **SAF** : Biofuels and Synthetic Electrofuels



**Biofuels** made from a range of biological sources



Feedstock collection (household waste, used cooking oil, etc.) Conventional fuel blending with SAF

Fuel delivery to the airport

Source: Combustion Engines, U.S. Global Investors

Electrofuels (e-fuels or Power-to-liquid (PtL)) made from  $CO_2$  and  $H_2$ (generated from renewable energy and water)



**High Commission** Singapore

| Phas                            | TF           | RL                                                                                                                | Deliverables                                                                                                                |   |                        | - |
|---------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---|------------------------|---|
| Research                        |              | <ul> <li>Idea basic principles investigation</li> <li>Concept development, core questions investigated</li> </ul> |                                                                                                                             |   |                        |   |
|                                 |              | Ц t                                                                                                               | hrough simulation/bench top component models<br>Concept validation experiments/experimental core<br>systems bench top tests |   | Energy Innovation      |   |
| Development                     |              | 4 i                                                                                                               | Experimental bench top pre-prototype system<br>n lab                                                                        |   | Systems<br>Integration |   |
|                                 | nt           | 5                                                                                                                 | Small-scale prototype in relevant environment                                                                               |   |                        |   |
|                                 |              | ı 6                                                                                                               | ntegrated pilot scale demonstrator                                                                                          | Λ |                        |   |
| Deployment/<br>ommercialisation |              | 7                                                                                                                 | Pre-commercial demonstrator                                                                                                 |   | Enabling Jet Zero      |   |
|                                 | nt/<br>ation | 8                                                                                                                 | MVP/commercial launch                                                                                                       |   |                        |   |
|                                 |              | 9                                                                                                                 | Commercialisation and product enhancement                                                                                   |   |                        |   |

Utilization (TRL 6-9)

#### Innovation Wave 1 10-15 Years Focus: Certification



#### Innovation Wave 2a 20+ Years Focus: Efficiency



#### Innovation Wave 2b 20+ Years Focus: FC Certification







SG









## **1. Enabling H<sub>2</sub> Innovation:**

#### A new £12 million Hydrogen Integration Research Centre (HIRC)





To bridge our related RPIF-funded centres, **AIRC, DARTeC**, **Net Zero Research Airport** programmes and our £7.5 million BEIS-Funded 1.5 MW blue-hydrogen demonstrator- **HyPER**. Dedicated laboratories will enable research linking developments in materials for hydrogen production, storage, SAF, ammonia and hydrogen refuelling for mobility (Figure 1), addressing Points 2, 4, 6, 8 and 10 of the TPP.

## **2. Enabling H<sub>2</sub> Systems Integration:**

#### A £9 million investment in our hydrogen gas turbine and fuel testbed.



2024: 6 New test cells



2025: A major secure remote test bed

Our 1950s testbed and test cells have been pivotal to gas turbine developments Bristol Airport Rolls for decades, and central to the rollout of hydrogen in turbines for 'Jet Zero'. Through transformative programmes including ENABLEH2 and EU-Cryoplane our testbed has provided R&D that will enable hydrogen transition for aviation; to accelerate this expansion and modernisation is required, addressing Points 4 and 6 of the TPP. \*This will be delivered as staged development avoiding any impact on our existing programmes.





National Centre for Atmospheric Science

URAL ENVIRONMENT RESEARCH COUR

- ODEX





# Contribution of mitigation strategies to achieve NET ZERO carbon in 2050 in aviation





HODEX



#### SGUK **Expected SAF required for Net Zero 2050 GREEN ECONOMY FRAMEWORK Cranfield** Environment and Agrifood Billion litres EX 罪 British **High Commission** Singapore Source: IATA (2023). Net zero 2050: sustainable aviation fuels

# The State of SAF in 2023



More than 490,000 flights 300+ million litres produced in 2022

2016: 500 flights

2016: 8 million litres 2025: ~5 billion litres

#### 7 technical pathways

2016: 4 pathways 2025: 11 pathways



#### **57 offtake agreements since 2022**

40 publicly announced SAF offtake agreements and 17 non binding agreements

#### 130+ renewable fuel projects

# **70% average** $CO_2$ reduction

have been announced publicly by more than 85 producers across 30 countries 2016: ~60% reduction 2025: ~80% reduction

Source: IATA 2025 estimates





British High Commission Singapore

Source: IATA (2023). Net zero 2050: sustainable aviation fuels



# How much SAF do we need?



# > 100 billion

litres/year (by 2050)

If the aviation sector's emission reduction target of 50%

# ~ 200 billion

litres/year

Holding the global temperature rise to no more than 1.5°C

# > 450 billion

litres/year (by 2050)

If SAF to account for 65% of the mitigation to achieve net zero  $CO_2$  emissions by 2050



Singapore

**I**JEX





British High Commission Singapore





# **UK Presentation on SAF**

Prof. Kumar Patchigolla (Teesside University) Dr. Ali Nabavi (Cranfield University) Dr. Diganta Das (Loughborough University)



Research England

KK

# UK presentation on SAF

This session will cover:

- UK SAF strategy
- Analysis of Jet-Zero Model & Scenarios
- Low TRL academic activities
- High TRL industrial demonstrations, specific to UK
- UK-Singapore developments





# Spot the location, where is it?

SUPPORTED BY THE

www.slido.com

**Cranfield** University





## **UK SAF Strategy**

#### £165 million government investment



SGU

#### Carbon-based sustainable synthetic fuels:

• Synthetic biofuels

**Cranfield** University



SGU

• Electrofuels (power-to-liquid, PtL)



## Aviation carbon emission reduction approaches

- Understanding assumptions will be important as this will dictate the residual emissions.
- Each assumption category is linked to one of the other workstreams
- (1) Operational Efficiencies
- (2) Clean Propulsion Technology
- (3) Sustainable Aviation Fuels
- (4) Model Update





- Effect of Carbon Price on Demand
- Improved Operations / ATM
- using less
- Fleet Upgrades, with known aircraft types
   Fleet Upgrades, with future aircraft types
- Sustainable Fuels
- Gross Emissions (CO<sub>2</sub> emissions from UK departing flights before offset and removal)
- Market Based Measures MBMs specifically EU ETS + CORSIA
- MBMs (Carbon removal measures)
- Net Emissions



### SAF uptake – proposed UK mandate



| Assumption            | Scenario A: Current trends    | Current trends Scenario B: High ambition Scenario E: High |                               | Scenario D: High ambition     |  |
|-----------------------|-------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|--|
|                       |                               |                                                           | with breakthrough on          | with breakthrough on zero     |  |
|                       |                               |                                                           | sustainable aviation fuels    | emission aircraft (ZEA)       |  |
|                       |                               |                                                           | (SAF)                         |                               |  |
| Demand                | 74% increase in UK terminal   | 70% increase in UK terminal                               | 70% increase in UK terminal   | 70% increase in UK terminal   |  |
|                       | passengers by 2050 (from      | passengers by 2050 (from                                  | passengers by 2050 (from      | passengers by 2050 (from      |  |
|                       | 2018)                         | 2018)                                                     | 2018)                         | 2018)                         |  |
|                       | Passenger numbers 493 million | Passenger numbers 482 million                             | Passenger numbers 482 million | Passenger numbers 482 million |  |
|                       | in 2050                       | in 2050                                                   | in 2050                       | in 2050                       |  |
| Carbon price          | DfT mid ETS prices            | DfT mid ETS prices                                        | DfT mid ETS prices            | DfT mid ETS prices            |  |
| (£ <sub>2020</sub> )  | £150/t in 2030, £378 in 2050  | £150/t in 2030, £378 in 2050                              | £150/t in 2030, £378 in 2050  | £150/t in 2030, £378 in 2050  |  |
|                       | Low CORSIA Prices             | Mid CORSIA Prices                                         | Mid CORSIA Prices             | Mid CORSIA Prices             |  |
|                       | £6/t in 2030, £37/t in 2050   | £6/t in 2030, £378/t in 2050                              | £6/t in 2030, £378/t in 2050  | £6/t in 2030, £378/t in 2050  |  |
| Capacity              | Based on airport capacity     | Based on airport capacity                                 | Based on airport capacity     | Based on airport capacity     |  |
|                       | constraints (Jet Zero         | constraints (Jet Zero                                     | constraints (Jet Zero         | constraints (Jet Zero         |  |
|                       | Consultation assumptions)     | Consultation assumptions)                                 | Consultation assumptions)     | Consultation assumptions)     |  |
| Fuel efficiency       | ATA Central Efficiency        | ATA Central Efficiency                                    | ATA Central Efficiency        | ATA Central Efficiency        |  |
| improvements          | 1.5% pa (2017-2050)           | 2.0% pa (2017-2050)                                       | 2.0% pa (2017-2050)           | 2.0% pa (2017-2050)           |  |
| SAF uptake            | 10% by 2050                   | 50% by 2050                                               | 100% by 2050                  | 50% by 2050                   |  |
|                       | Assumed 70% reduction in      |                                                           | 10% by 2030                   |                               |  |
|                       | carbon intensity vs kerosene  |                                                           |                               |                               |  |
| Zero emission         | None by 2050                  | 27% ATMs zero emission                                    | 27% ATMs zero emission        | 38% ATMs zero emission        |  |
| aircraft uptake       |                               | by 2050                                                   | by 2050                       | by 2050                       |  |
|                       |                               | Zero emission aircraft                                    | Zero emission aircraft        | Zero emission aircraft        |  |
|                       |                               | introduced after 2035                                     | introduced after 2035         | introduced after 2035         |  |
| Residual              |                               |                                                           |                               |                               |  |
| emissions             | 35.9                          | 15.4                                                      | 0.0                           | 9.2                           |  |
| (MtCO <sub>2</sub> e) |                               |                                                           |                               |                               |  |

Rank scenarios that you think offer the best trade-offs between ambition and deliverability?



www.slido.com



SG



# SAF uptake – proposed EU targets

Detailed goals and milestones are laid out in European Climate Law. The '**Fit** 1 package sets out an initial target of reduction in emissions by 55% in 2030 (co 1990 levels). As part of the 'Fit for 55' package, the Commission proposed to t the uptake of SAF in air transport.

The proposed rules therefore set a sub-target to ensure that a certain amount of SAF used are synthetic fuels (see table).

|                                                            | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 |
|------------------------------------------------------------|------|------|------|------|------|------|
| Percentage of SAF<br>used in air<br>transport:             | 2%   | 5%   | 20%  | 32%  | 38%  | 63%  |
| Of which: sub-<br>mandate synthetic<br>fuels (or e-fuels): | -    | 0.7% | 5%   | 8%   | 11%  | 28%  |

https://www.easa.europa.eu/en/light/topics/fit-55-and-refueleu-aviation

# What are the key research gaps for SAF?







SG

#### Cranfield activities (1/4) – power to liquids SGU Renewable Waste electricity heat Carbon dioxide Electrolysis/ Carbon monoxide Synthesis Upgrading Electrofuel RWGS Electrolysis Hydrogen Water Renewable Waste electricity heat Routes Synthesis Electrolyser CO<sub>2</sub> source Efficiency (%) TRL Limitation 45-46\* Fischer-Tropsch 5 SOEC / RWGS 62-63\*\* High – Temp. SOEC DAC\* Methanol SOEC 5 (2050: 47-64) Point 38-41\* Fischer-Tropsch 6 RWGS sources\*\* 48-53\*\* Low – Temp. PEM/AEL Methanol 8 (2050: 42-54)

Schmidt et. al., Power-to-Liquids. Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel, 2016.

#### Cranfield activities (2/4) – CO2 capture and removal



Innovate UK

Engineering and Physical Sciences Research Council Department for Business, Energy

& Industrial Strategy

Ϋ́Υ
### Cranfield activities (3/4) – Solid oxide facility

- The facility runs:
  - $\circ~$  Electrolyser mode to generate green H\_2 and H\_2/CO which can be further upgraded to SAF
  - Fuel cell mode to generate electricity and highgrade heat (CHP)

- Test fuel flexibility (low-grade H<sub>2</sub>; biogas, biomethane, ammonia, H<sub>2</sub>/CO)
- Evaluate performance and durability
- Test next-generation electrodes

Cranfield

University





**TRL: 4** 



Loughborough University activities (1/3) - membrane bioreactor systems for treatment and conversion of agrowaste

# The details on this slide have been omitted as they pertain to unpublished research.







#### Loughborough activities (2/3) - Porous Membrane Preparation and Separation for Downstream Processing

Journal of Water Process Engineering, Volume 37, October 2020, 101408, doi: 10.1016/j.jwpe.2020.101408





SG



Journal of Water Process Engineering, Volume 37, October 2020, 101408, doi: 10.1016/j.jwpe.2020.101408 Applied Mathematical Modelling, Volume 80, April 2020, Pages 84-98, doi: 10.1016/j.apm.2019.11.016



#### Teesside activities (1/3)- SAF



Gasification/Pyrolysis/microwave system









#### **Teesside activities (2/3)- DAC**

- Investigating DAC properties of different inorganic, organic and bio-catalytic agents
- Part of the CO2RE, the national GGR Hub and offering training to external students
- Supporting DAC based SMEs with analytical facilities and consultancy through the Open-Air Coalition
- Several projects completed/underway -BIOCO2MIN, TENET, Carboscopic and Airhive
- Potential to extract up to 80 Tons CO<sub>2</sub> from atmosphere each year from the atmosphere each year
- Direct air capture, liquefication and transport B9 Energy



**Teesside activities (3/3) – Methanol** 

### The details on this slide have been omitted due to pending patent application.





SGI

# UK SAF Demonstrators based at Teesside

#### Arcadia e-Fuels (NABOO) -£12m

- power-to-liquid technology to convert biogenic CO2 and green hydrogen into SAF.
- expected to be operational in 2028
- produce 67.7kt/y of SAF.



# Nova Pangaea Technologies (Project Speedbird) – £9m •pyrolysis and ethanol-to-jet technology to convert agricultural waste into SAF. •expected to be operational in 2025 •produce 2.7kt/y of SAF.

#### Alfanar Energy (Lighthouse Green Fuels) – ~£9m

•uses gasification and Fischer-Tropsch technology to convert biogenic and nonbiogenic wastes and residues into SAF.
•under construction in 2025, operational in 2028, and produce 124.2kt/y of SAF.

Willis Sustainable Fuels (Carbonshift PtL) – ~£5m

power-to-liquid technology to convert carbon dioxide and green hydrogen SAF.
expected to be operational in 2026
produce 14kt/y of SAF. Abundia Biomass-to-Liquids (A-Jet UK) – £4m plus
•uses pyrolysis and hydrotreatment technology to convert sawmill and forestry residues into SAF.
•expected to be operational in 2026
•produce 2.6kt/y of SAF

## SAF Conversion Pathway: feedstock, blending limit, TRL

| Production pathway                                  | Feedstocks <sup>30</sup>                           | Certification name (blending limit)   | TRL        |
|-----------------------------------------------------|----------------------------------------------------|---------------------------------------|------------|
| Biomass Gasification + Fischer-<br>Tropsch (Gas+FT) | Energy crops, lignocellulosic biomass, solid waste | FT-SPK <sup>31</sup> (up to 50%)      | 7-8        |
| Hydroprocessed Esters and Fatty<br>Acids (HEFA)     | Vegetable and animal fat                           | HEFA-SPK (up to 50%)                  | 8-9        |
| Direct Sugars to Hydrocarbons<br>(DSHC)             | Conventional sugars, lignocellulosic sugars        | HFS-SIP <sup>32</sup> (up to 10%)     | 7-8 or 533 |
| Biomass Gasification + FT with<br>Aromatics         | Energy crops, lignocellulosic biomass, solid waste | FT-SPK/A <sup>34</sup> (up to 50%)    | 6-7        |
| Alcohols to Jet (AtJ)                               | Sugar, starch crops, lignocellulosic<br>biomass    | ATJ-SPK (up to 50%)                   | 7-8        |
| Catalytic Hydrothermolysis Jet<br>(CHJ)             | Vegetable and animal fat                           | CHJ or CH-SK³⁵ (up to 50%)            | 6          |
| HEFA from algae                                     | Microalgae oils                                    | HC-HEFA-SPK <sup>36</sup> (up to 10%) | 5          |
| FOG Co-processing                                   | Fats, oils, and greases                            | FOG (up to 5 %)                       | -          |
| FT Co-processing                                    | Fischer-Tropsch (FT) biocrude                      | FT (up to 5 %)                        | -          |

Source: European Union Aviation Safety Agency (EASA). (2024). Sustainable Aviation Fuels (Figures and Tables).





British High Commission Singapore





# Singapore Presentation on SAF

Dr Roong Jien Wong (A\*Star)





Research England



# Initiatives on Sustainable Aviation Fuel (SAF) and Low-Carbon Hydrogen



Institute of Sustainability for Chemicals, Energy and Environment

# A\*STAR and ISCE<sup>2</sup>

## A\*STAR:

The <u>Agency for Science</u>, <u>Technology</u> and <u>Research</u> (A\*STAR) is a statutory board under the Ministry of Trade and Industry of Singapore Our

## ISCE<sup>2</sup>:

ISCE<sup>2</sup> is one of 17 Research Institutes (RI) under A\*STAR. We develop innovative sustainable technologies and partner with the ecosystem to catalyse the transformation and growth in green energy and chemicals Balanced Portfolio of technologies

Platforms and infrastructure as **critical enablers** to accelerate innovation

Bridge the valley-of-death with partners towards **industrial scale-up** 

Approach

# Jurong Island contributes to 54%<sup>1</sup> of Singapore's total carbon emissions

 $\alpha^{\star}$ 

Non-renewable raw materials (petroleum)

Carbonintensive fossil fuels (natural gas, petroleum) as energy source

High capex > 100 MNCs; 3rd party utilities, waste treatment, storage & terminalling



The government invested S\$7 billion to reclaim Jurong Island to develop an integrated refining, petrochemical and specialty chemical hub Naphtha,

Petrochemical and specialty chemical products

<sup>1</sup>Hon, C.L., et al. Energies, **2021**, 14(20):6455

# Greening Jurong Island - the future direction of E&C is to reduce $\mathscr{A}^*$ dependency on fossil fuels

Alternative raw materials (e.g. CO<sub>2</sub>, biomass, waste)

New energy mix to support the clean energy transition (e.g. H<sub>2</sub>/NH<sub>3</sub>, green electricity)

Emergence of climate-tech companies with sustainable technologies



Jurong Island is envisioned to transform into a sustainable energy and chemicals park

Methanol, Biofuels, Sustainable Aviation Fuel (SAF), Hydrogen

New circular materials

## **ISCE<sup>2</sup> Technology Development**



#### CO<sub>2</sub> to X (X = fuels, chemicals, materials)

Develop carbon-neutral/carbonnegative processes (at lab scale up to TRL ~4; with further scale-up (up to TRL ~8) to demonstrate the technology)

- CO<sub>2</sub> methanation technology developed and commercialised with IHI
- CO<sub>2</sub> to SAF: Active collaboration with industry to establish larger scale demonstration unit
- **CO<sub>2</sub> to methanol**: Preparing proposal for government funding

Accelerated Catalyst Development Platform (ACDP)

Accelerated discovery and develop heterogeneous catalytic processes by 5x, to TRL ~4

- 16 parallel catalyst syntheses; Flexible 16 reactor system
- Mimics industrial temperatures, pressures & reaction feeds; leverages automation, ML and high-performance computing



ASEAN Outstanding Engineering Achievement Award 2023

IES Sustainability Awards 2023 -Innovative Solutions for Sustainability

#### Low Carbon Technology Translation Testbed (LCT3)

Bridging the translational gap by rapidly piloting and scaling-up new CCU tech to TRL 4 - 8



- Reduce test-bedding time by 2x (from 2 years to <12 months)
- Future state Modularisation + Digital Twin for CCU
- Expected to be ready by 2026 In partnership with >20 ecosystem partners including E&C companies, technology adopters, solution providers, IHLs and A\*STAR Rls

ARES Public

# **ISCE<sup>2</sup> Technology Portfolio**

## $\alpha^{\star}$

#### Low Carbon Future Low-Carbon H<sub>2</sub> 1. Methane High-Value High-Value High-Value High-Value High-Value Circular Economy Waste to Chemicals/Fuels/Materials Methane/Metha



**GREEN PLAN** 

# ISCE<sup>2</sup> Technology Portfolio

C2-C4

Low Carbon Future

 $CO_2$ +

 $H_2$ 

(renewable)

CO<sub>2</sub> to X

:::

#### **Circular Economy**

#### Waste to Chemicals/Fuels/Materials



**ARES Public** 









British High Commission Singapore





# **Lunch Break**

#UKSingaporeJetZero #UKSGEF @HyDEXMidlands @UKinSingapore



Research England





# Afternoon Discussion Session





# SGUK

British

Singapore

**High Commission** 

# Working group themes – ranking exercise

- 1 Feedstock and sustainability
- 2 Process and economics
- 3 Infrastructure
- 4 Technical specification and certification

• Any other themes?

Contribution of Measures for Reducing International Aviation  $Net CO_2$  Emissions:





# **Roundtable discussion points**

- Identifying significant gaps in research across each thematic area
- What areas we need to focus on increasing efficiency and lower costs
- How to maintain fuel integrity
- What strengths and expertise we have in the UK and Singapore
- Any alternative fuels instead of SAF?







# Any comments or questions from this SAF workshop?





British High Commission Singapore







British High Commission Singapore





# **Refreshment Break**

#UKSingaporeJetZero #UKSGEF @HyDEXMidlands @UKinSingapore



Research England





# Summary and final thoughts... Prof Ron Corstanje





SUPPORTED BY THE

# Thank you for coming to our workshop

Please join the conversation about today's event: #UKSingaporeJetZero #UKSGEF & @HyDEXMidlands, @UKinSingapore Linked in HyDEX, UK in Singapore



Web: <u>www.hydex.ac.uk</u> Email: hello@hydex.ac.uk



Singapore