

Drought impacts in small-scale farming community: Opinion from Global and Local contexts

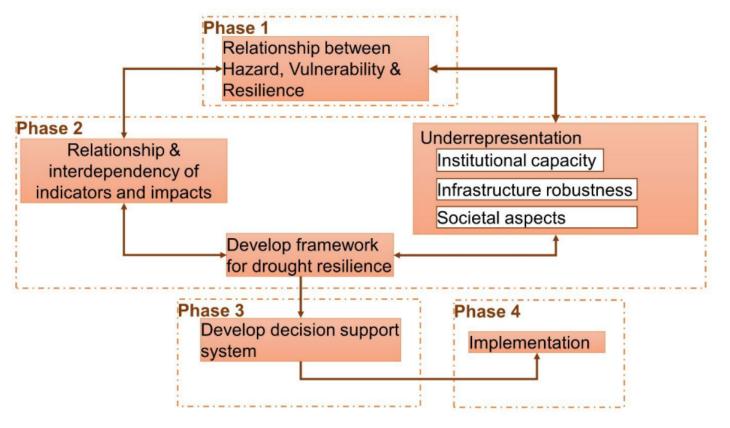
Management of Disaster Risk and Societal Resilience (MADIS)

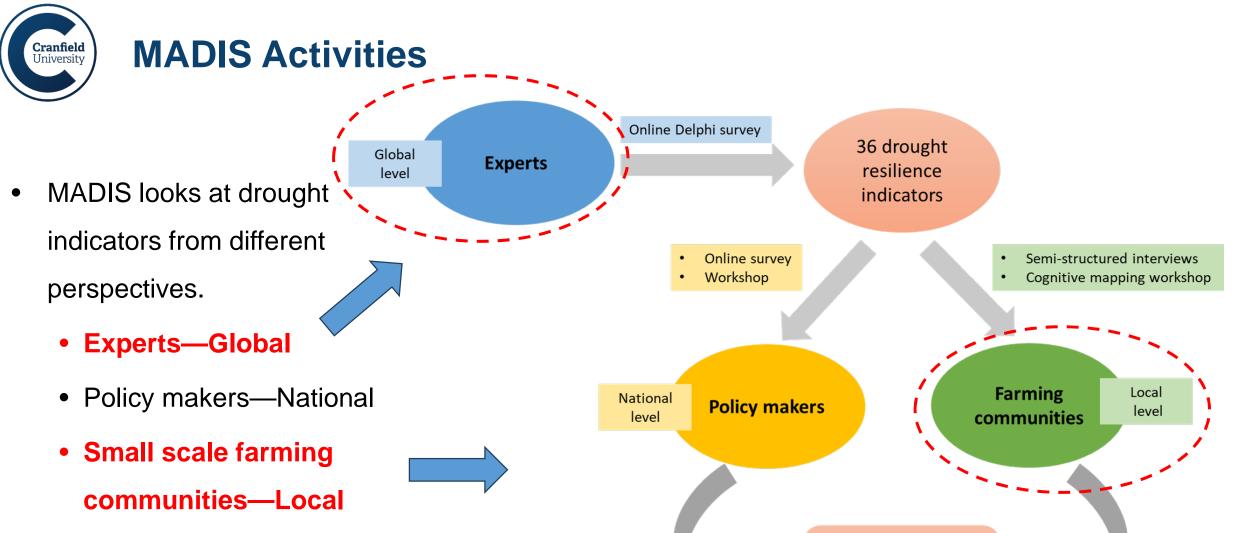
Dr Tanaya Sarmah

21 March 2024

www.cranfield.ac.uk

- Management of Disaster Risk and Societal Resilience (MADIS) → internationally-funded project through Belmont Forum and EPSRC.
- The UK team is headed by Professor Nazmiye
 Ozkan at Cranfield University. Our project
 partners are at Pennsylvania State University
 (Prof Mike Jacobson & Prof Abdullah Konak), the
 University of Sao Paulo (Professor Adelaide
 Nardocci)
- Local collaborators in Morocco, South Africa, and Turkey.



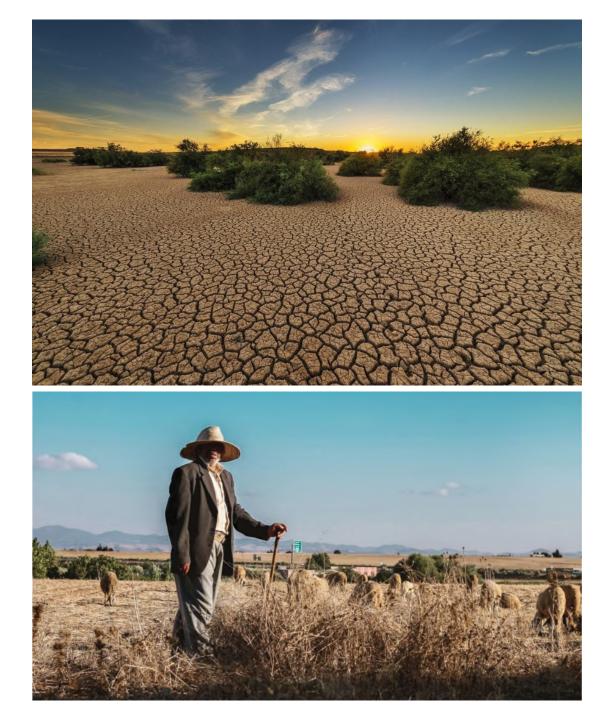

Aim and Objectives of MADIS

Aim: To improve insights into the interaction and interdependencies between \rightarrow \leftarrow different risk, resilience, and vulnerability indices \rightarrow

←relationship to the impacts of droughts and evolution of infrastructure systems.

- Relationship between drought hazard, vulnerability, and resilience
- Role of institutional, infrastructural, and societal dimensions to improve drought resilience
- Linkage between droughts indicators and the impacts
- Drought management using socio-technical tools for decision making

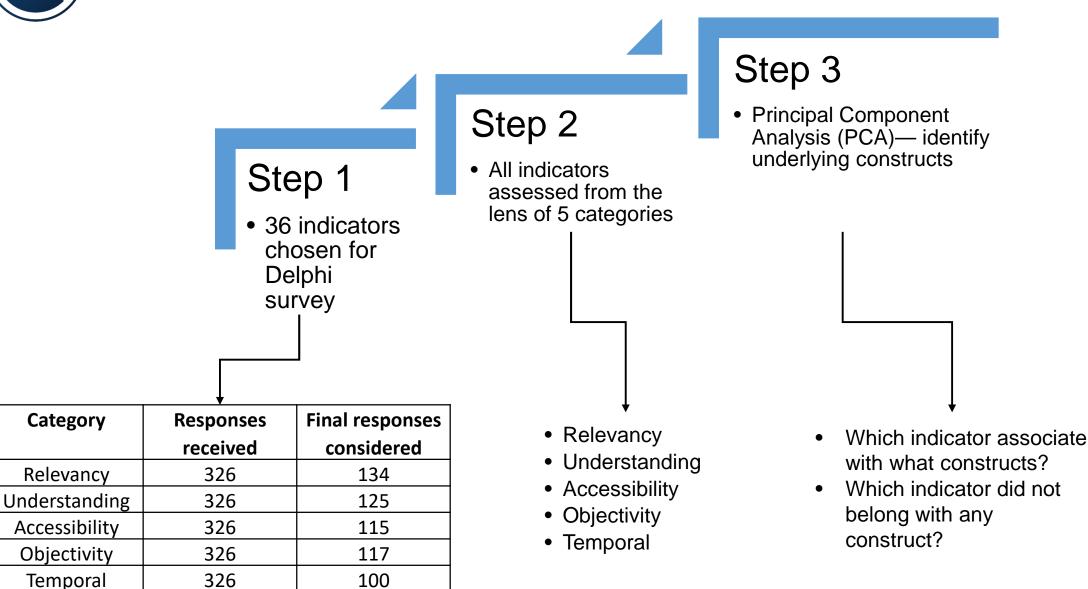
Decision support system for assisting in drought management



Part A

Relevance of agricultural drought vulnerability and resilience indicators for small farms—*Experts' POV*

- Drought is often referred to as a "creeping hazard"
- Frequency and severity of drought events are also increasing
- Looking towards→ drought resilience, a multidimensional framework
- Gap in understanding the specific drought vulnerability and resilience indicators



- Indicators → measurable quantities that guide decision-making process
- Existing literature \rightarrow myriad of indicators
- Differing opinion → based on 'perspective', 'lens' or 'categories'
- No answer to question: "Which indicators are important for indicator-based decision-making from different lenses?"
- might be crucial for decoding the importance attached to individual indicators→ Experts' POV

"The burden of choice"

Global Online Delphi Survey with Experts

- Delphi survey in two parts—this work is from the first part.
- Each indicator → evaluated in terms of <u>''categories</u>' relevancy, easy of understanding, data accessibility, data objectively, data consistency over time.
- Scale: low, medium, high, and don't know.

Resilience

Vulnerability

Туре	Indicators	Туре	Indicators
Agricultural (crop)	Cultivation of drought-resistant crops (%)		Percentage of participation of crop and livestock production in the
Agricultural (crop)	Farmers use different crop varieties (%)	Agricultural (crop)	income of smallholder farming
Agricultural (land)	Land rights clearly defined (yes/no)	Agricultural (crop)	Crop Damage & Sensitivity (Crop Loss)
Government & policy	Existence of drought management policies	Agricultural (general)	Area protected and designated for the conservation of biodiversity (%
Government & policy	Technical assistance from local entities	Agricultural (general)	Use of Insecticides and pesticides (Use of agricultural inputs)
Government & policy	Farmers with crop, livestock or drought insurance (%)	Agricultural (general)	Crop water use efficiency (WUE)*
Government & policy	Water use rights clearly defined	Agricultural (land) Social	Degree of land degradation and desertification* Prevalence of conflict/insecurity
Infrastructure & Techn	Availability of drought prediction and warning systems or climatic lology predictions	Social Social	Population without access to (improved) sanitation (%) Gender inequality (categorical)
Infrastructure & Techn	ology Transportation network	Social	Rural population (% of total population)
Infrastructure & Techn	ology Access to electricity (Acess to energy)	Socioeconomic	Unemployment rate (and/or proportion of formal work)
Socioeconomic	Food source reliability and diversity	Social	Population ages 15-64 (% of total population)
Social	Public participation in local policy	Social	Percentage of population displaced internally or transboundary
Social	Participation in farming cooperatives or associations	Social	Presence of drivers of migration and displacement
Socioeconomic	Access to financing and credit	Socioeconomic	Poverty Rate
Water/stream	Integrated land and water management policies	Socioeconomic	% of the population employed in small farms
Water/stream	Percentage of retained renewable water	Water/stream	Baseline water stress (ratio of withdrawals to renewable supply)
Water/stream	Total dam capacity	Water/stream	Water quality
water/stream	Total dam oupdoity	Water/stream	Groundwater level/sources

Questionnaire "categories"

- LOW: The indicator is not clearly connected to a policy objective.
- MEDIUM: The indicator is understood by most decision-makers with some clarification.
- HIGH: The indicator conveys useful, relevant information for decision-makers on a specific policy objective.

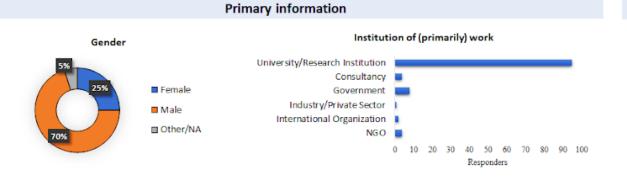
Ease of Understanding

- LOW: The indicator may be interpreted differently by various decisionmakers.
- MEDIUM: The
- indicator is understood by most decision-makers with some clarification.
- HIGH: The indicator is readily understood by decision-makers.

Data Accessibility

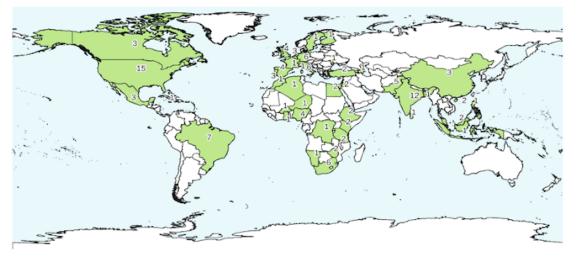
- LOW: Collecting and processing the data requires significant time and effort.
- MEDIUM: The indicator data is mostly available, but processing the data requires some effort.
- HIGH: The indicator data is publicly accessible and readily available. Processing the data requires minimal effort.

Objectivity

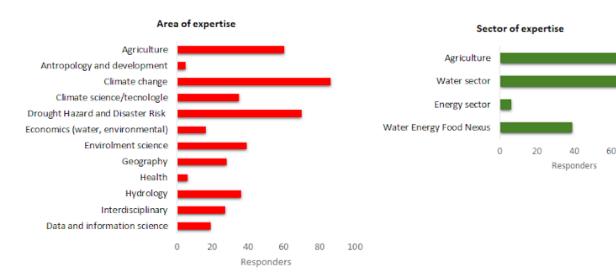

- LOW: May require expert judgment to evaluate the indicator.
- MEDIUM: Requires some degree of expert judgment to interpret quantitative or qualitative data.
- **HIGH:** An objective measure is based on quantifiable, impartial, and recorded data.

Temporal Availability

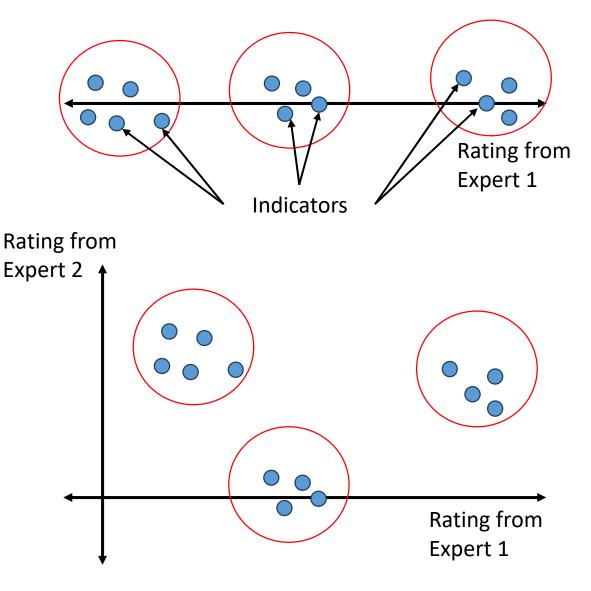
- LOW: The indicator data is collected in an ad-hoc manner, limiting the ability to monitor the indicator over different temporal scales.
- MEDIUM: The indicator data is collected periodically but not frequently enough for comparing the indicator in different temporal scales.
- **HIGH:** The indicator data is available over different time scales.



Demographical Overview



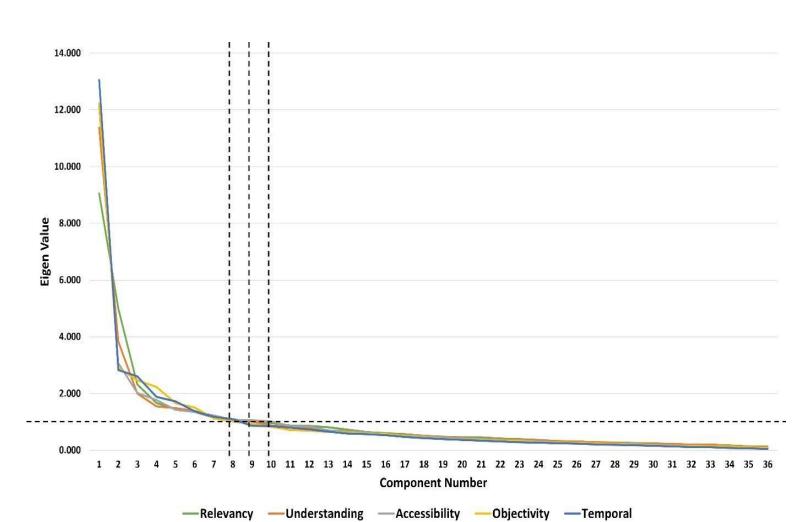
Location


Areas and sectors of expertise

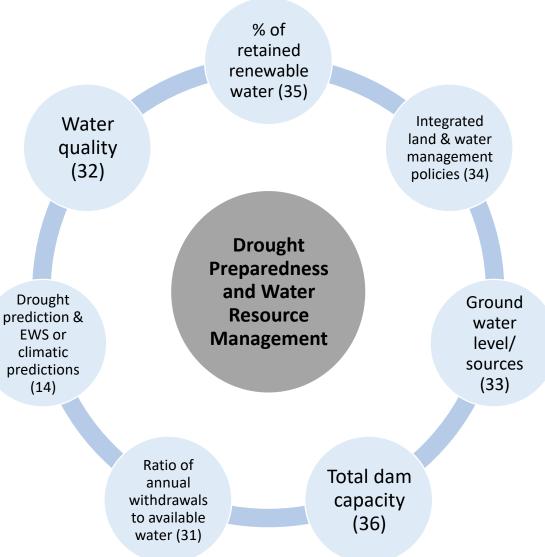
80

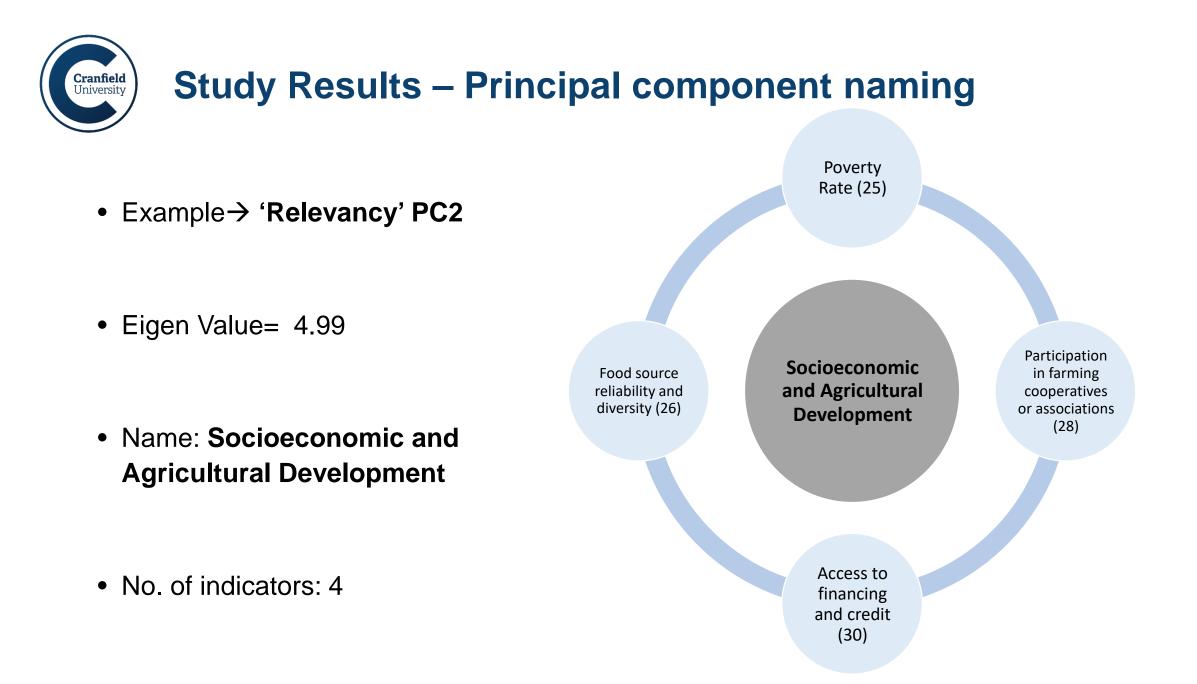
- Before jumping to PCA → how can we reduce variable without any technique?
- Our case → Variables = 36 indicator, measurement for grouping = rating from experts
- For one expert \rightarrow possible to group similar ratings
- For two & three experts \rightarrow graphically possible to group

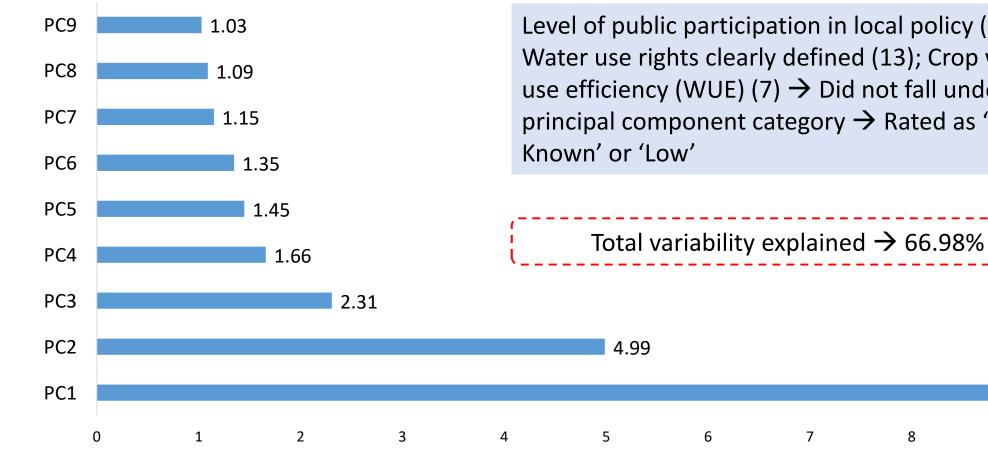
Principal component analysis (PCA)

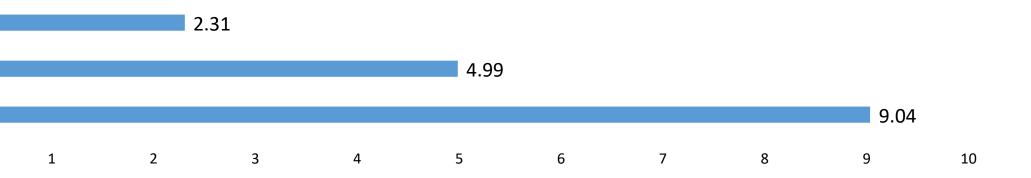

- But not possible for >3 experts—graphically •
- PCA: Technique for reducing/ consolidating • variables in a dataset
- Basis to reduce/ consolidate \rightarrow correlation • among indicators
- Transforms original variables into new • variables (PC) \rightarrow As many PC as indicators but no correlation among themselves
- Overall strength of each PC = "Eigen Value" •
- Strength of each indicator in one PC = "Loading"

Correlations among responses – 'Re	elevancy' cate	gory
Certain indicator pairs were		
moderately (and positively) correlated		
across all indicator categories		
 The correlation values of these 		
indicator pairs ranged between 0.468		
to 0.711 with a majority of this pair		
having a value more than 0.6 across		
all categories		
Lowest correlation – Percentage of the rural		
population vs. Unemployment rate = 0.468		
Highest correlation – Integrated land and water		
management policies & Percentage of retained L		
renewable water = 0.711		

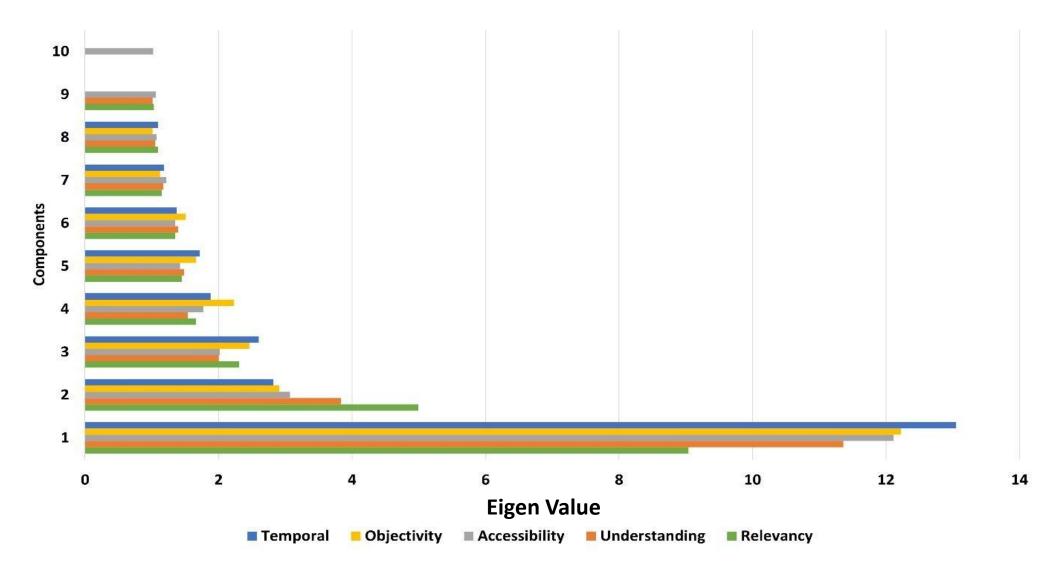

Study Results – Principal components derived


- To identify number of principal components 'scree plot' is used → all PC eigen values > 1 are retained
- 8 PCs for 'Objectivity' & 'Temporal'
- 9 PCs for 'Relevancy' and 'Understanding'
- 10 PCs for 'Accesssibility'
- Each PC were associated with certain indicators → Each component can therefore be given a common 'name' associated with the indicators


- Eigen Value= 9.04
- Name: Drought Preparedness and Water Resource Management
- No. of indicators: 7
- Benefit → Individual indicators become viewed within the component (water-cycle management) as a whole rather than in isolation



Study Results – Other principal components


Level of public participation in local policy (27); Water use rights clearly defined (13); Crop water use efficiency (WUE) (7) \rightarrow Did not fall under any principal component category \rightarrow Rated as 'Not

Eigen value

Study Results – All categories

Discussion – Indicators common across PCs

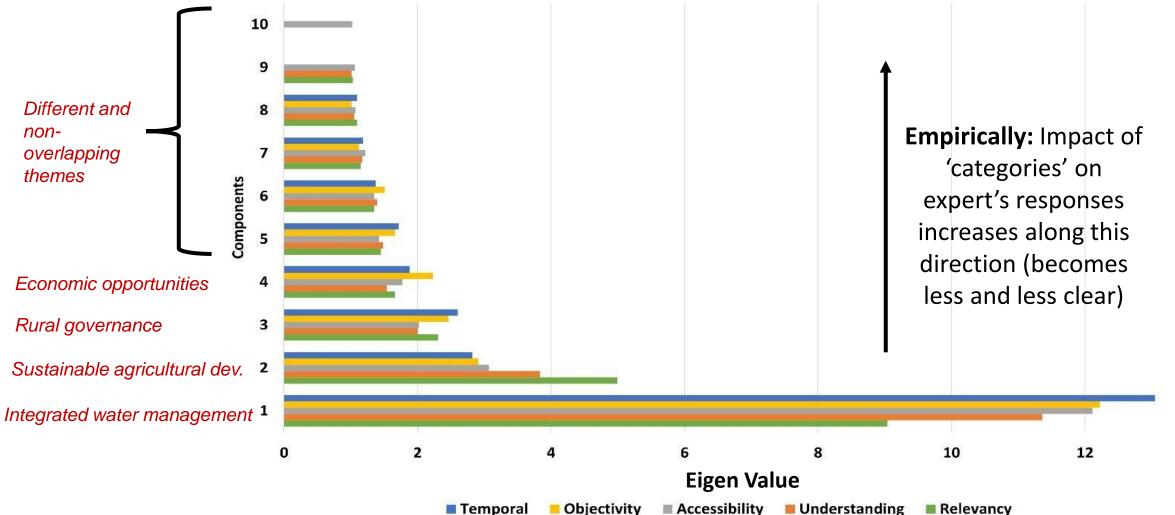
Principal Component 1 across all categories

Comp.	Indicators	R	U	Α	0	Τ
	Crop water use efficiency (WUE) (7)					
Integrated	Degree of land degradation and desertification (8)					
water	Availability of drought prediction and warning systems or					
management	climatic predictions (14)					
	Participation in farming cooperatives or associations (28)					
1 🗸	Ratio of annual withdrawals to available water (31)					
	Water quality (32)					
	Groundwater level/sources (33)					
	Integrated land and water management policies (34)					
	Percentage of retained renewable water (35)					
	Total dam capacity (36)					

- Most relates to water
- 4 most influential indicators—"must-haves"
- Intuitive

Indicator appearing across all 5 categories Indicator appearing across any 4 categories Indicator appearing across any 3 categories Indicator appearing across any 2 categories Indicator appearing across any 1 categories

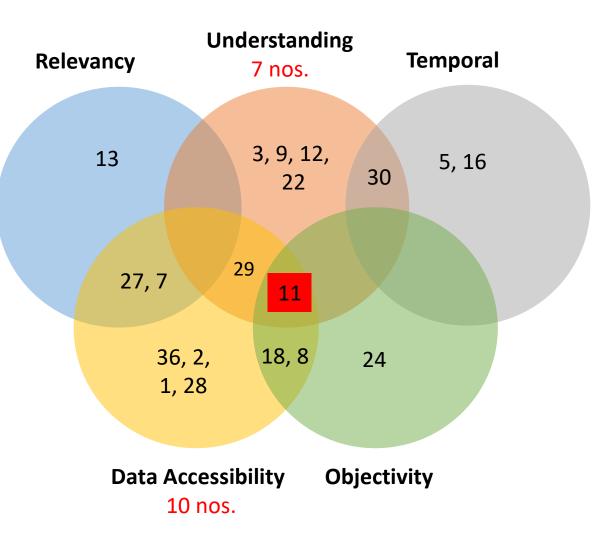
Discussion – Indicators common across PCs


- As eigen value decrease→ common indicators also decrease
- 3 indicators across
 'accessibility', 'objectivity',
 'temporal'
- Data is available, historically as well as easily quantifiable—
 "planning and policy levers"

Principal Component 2 across all categories

Comp.	Indicators	R	U	Α	0	Τ
	Percentage of the contribution of crop and livestock production in					
	the income of smallholder farming (1)					
	Crop loss (2)					
	Percentage of drought-resistance crop varieties cultivated (3)					
	Percentage of farmers who use different types of crops (4)					
▼ [Percentage of area protected and designated for the conservation					
	of biodiversity (5)					
	Use of agricultural inputs (e.g., insecticides, pesticides,					
	fertilizer, machinery) (6)					
2	Existence of drought management policies					
	(mitigation/adaptation/prevention/preparedness) (10)					
sustainable Percentage of farmers with crop, livestock, or drought insurance						
agricultural	agricultural (12)					
developmen	Water use rights clearly defined (13)					
	Poverty Rate (25)					
	Food source reliability and diversity (26)					
	Level of public participation in local policy (27)					
	Participation in farming cooperatives or associations (28)					
	Access to financing and credit (30)					

Discussion – Indicators common across PCs

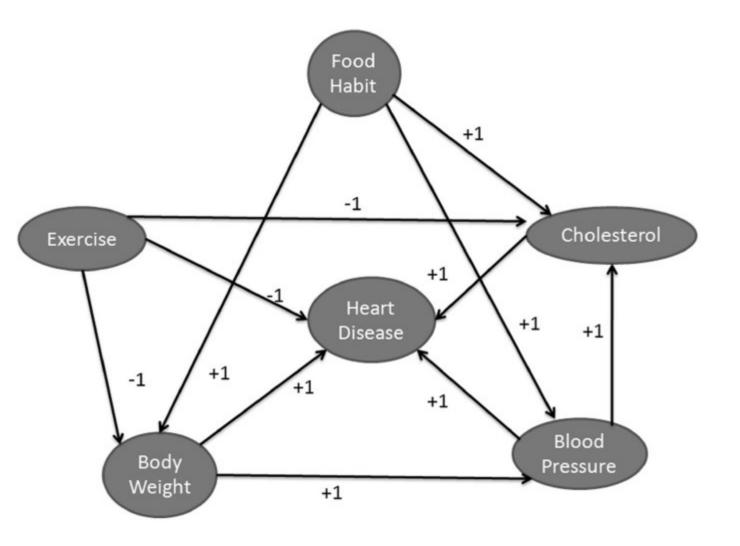


14

Discussion – Indicators that do not relate to any PC

- 'Understanding' and 'accessibility' → max. no. of indicators that did not include any PC
 - Because → indicators interpreted differently by experts
 - Indicator data not easily accessible or available, as best known by the experts
- Technical assistance from local entities (e.g., cooperatives/NGO/government) (11) → does not fall under any of the three categories
 - Because → data on the provision of technical assistance from local entities is qualitative, less understandable, if the data exists it is not accessible to all
 - But → indicator is relevant and can be collected at different temporal scales

- Not all indicators are influential and usable for the policy makers
- "Must-have" indicators (influential and usable across all 'categories'):
 - Ratio of annual withdrawals to available water (31)
 - Water quality (32)
 - Groundwater level/sources (33)
 - Percentage of retained renewable water (35)
- "planning and policy levers" indicators—highly objective, accessible and temporally available
 - Percentage of drought-resistance crop varieties cultivated (3)
 - Percentage of farmers who use different types of crops (4)
 - Use of agricultural inputs (e.g., insecticides, pesticides, fertilizer, machinery) (6)
- Impact of 'categories' increases on experts' responses → less number of common indicators in each category → In other words, indicators associated with low Eigen value are less influential and usable
- Indicators that did not relate with any PC across many category can be removed from use → E.g. Technical assistance from local entities (e.g., cooperatives/NGO/government) (11)


Part B

Learnings from small scale farmers in Morocco

Introduction to Fuzzy Cognitive Mapping (FCM)

- What is Fuzzy Cognitive Mapping?
- A type of mental modelling → translated to pen and paper
- Example \rightarrow
- Captures cause-effect relationships and dynamic interactions through 'maps'
- Useful in capturing complex systems, people's perception, and where data is limited

- Conducted in Morocco, South Africa, Turkey
- Used to capture views on the connectivity between indicators showcasing → impacts of drought and adaptation to drought
- Most important and most linked indicators \rightarrow views from male and female groups \rightarrow separately

Impacts

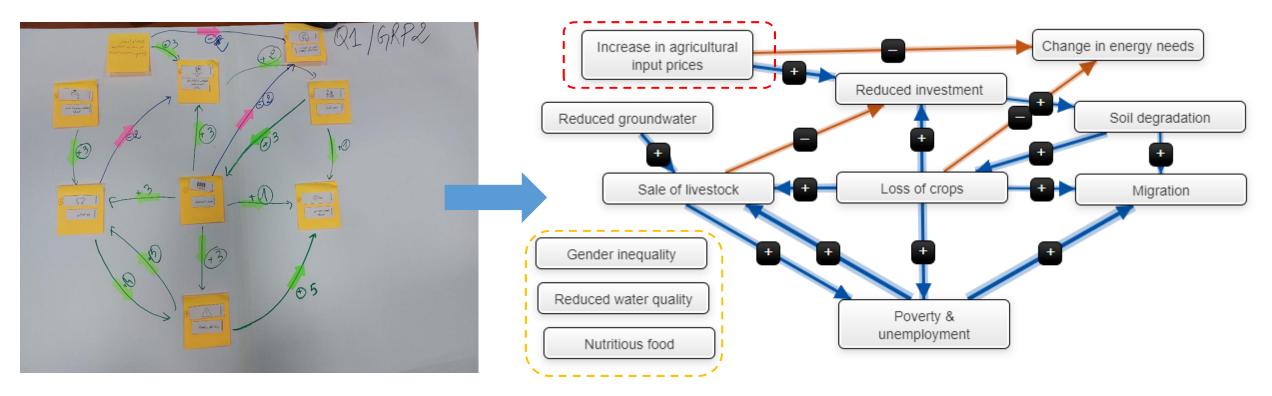
Indicators

- Loss of crops
- Reduce levels of groundwater
- Sale of livestock
- Soil degradation
- Reduced availability of nutritious food
- Reduced water quality
- Reduced investment possible in fertilisers, seeds, machinery
- Migration away from the area
- Increased poverty and unemployment
- Increased gender inequality
- Change in energy needs (more or less?)

Adaptation

Indicators

- Government policies on drought for small farmers
- Drought prediction and early warning systems
- Advice and coaching on new techniques and technology
- More water re-use or more efficient irrigation
- Higher % of drought resistant crops cultivated
- Access to insurance, finance or credit
- Access to fertilisers or machinery
- Access to (more) energy
- Participation in local farming co-operatives
- More local land set aside for conservation and biodiversity
- Improved produce storage and transportation capacity


- Teams from CU and UM6P
- Workshop conducted in two locations of Morocco
- Members from Al Moutmir, an NGO supporting farmers, also present as facilitators

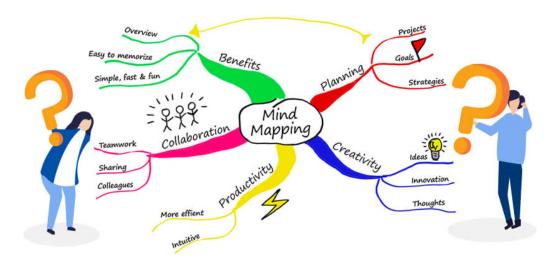
Settat (n=10)	El Jadida (n=16)				
Male = $4 + 4$	Male = $6 + 6$				
Female = 2	Female = 4				

Responses from farmers using sticky notes and white paper

Cognitive map developed using Mental Modeler

Data Gathered

MentalModeler	🖹 New 📥 Load 🖺 Save	🖻 Remove 🕒 Print	🛓 Import CSV 🔮	🛓 Export CSV 🛛 🛓 E	xport XLS 🛛 🖺 Save (Compare Ref	
E Files	🚓 Model	III Matrix	Preferre Metr		Scenario	🕄 In	fo
🚠 Model	Total Components	Component •	Indegree 🔻	Outdegree •	Centrality •	Preferred State	Туре 🔻
 Scenarios ADD Scenario 	12	Loss of crops	0.6	2.4	3	•	ordinary
	Total Connections	Reduced groundwater	0	0.6	0.6	-	driver
Model Scenarios ADD	15	Sale of livestock	2.2	1.2000000000000002	3.4000000000000004	-	ordinary
Scenario	Density	Soil degradation	0.4	0.8	1.2000000000000002	-	ordinary
	0.1136363636	Nutritious food	0	0	0	-	none
	Connections per Component	Reduced water quality	0	0	0	-	none
	1.25	Reduced investment	1.6	0.4	2	-	ordinary
	Number of Driver Components	Migration	1.4	0	1.4	-	receiver
	2	Poverty & unemployment	1.4	2	3.4	-	ordinary
	Number of Receiver Components	Gender inequality	0	0	0	-	none
	2	Change in energy needs	0.8	0	0.8	•	receiver
	Number of Ordinary Components	Increase in agricultural input prices	0	1	1	•	driver
	5						
	Complexity Score						
	1						I


- New indicators added by farmers:
 - Increase in agricultural input prices
 - Sale of farms
 - Lack of precipitation
 - Participation in agricultural cooperatives
 - Helping small farmers to dig wells and access solar energy
 - Loan accumulation
 - Increase of cost of living
 - And so on....

	Top central indicators Settat			Top central indicators El Jadida			
	Male 1	Male 2	Female	Male 1	Male 2	Female	
Q1 Impacts	Loss of crops Low groundwater	Loss of crops Sale of livestock	Low groundwater Sale of livestock	Low groundwater Low water quality	Sale of livestock Low investment	Low groundwater Low water quality	
Q2 Adaptation	Govt. policies New tech.	Drought resistant crops New tech.	Farming cooperative New tech.	New tech. Desalination unit	Govt. policies Drought resistant crops	Farming cooperative Fertilizers & machinery	

Summary – Based on cognitive mapping workshops

- Used as a participatory method \rightarrow explore experiences of drought and measures that support adaptation
- Additional indicators \rightarrow shows importance of farmers perspective in decision making
- Allows \rightarrow exploration of how indicators link together
- Sheds light on \rightarrow important indicators. Maps help us to find influence points.
- Significant similarities and differences noted → location, gender, type of crops → useful in formulating context specific policies

MADIS Team

Penn State University, USA

Cranfield University, UK

Sao Paolo University, Brazil

Thank You

T: +44 (0)1234 750111

- 😏 @cranfielduni
- (i) @cranfielduni
- 仔 /cranfielduni