

Management of Disaster Risk and Societal Resilience (MADIS)

Workshop: Next Steps for Future Disaster Research

Prof Nazmiye Ozkan

20 March 2024

Go to Vevox.com

Enter meeting ID: 178-664-473

www.cranfield.ac.uk

- Management of Disaster Risk and Societal Resilience (MADIS) is an internationally-funded project through Belmont Forum and EPSRC.
- MADIS aims to improve insights into the interaction and interdependencies between different risk, resilience, and vulnerability indices and their relationship to the impacts of droughts and evolution of infrastructure systems.

Universidade

PennState

Cranfield University, UK

Nazmiye Ozkan Sustainable Energy Transitions

Da Huo **Energy Systems** Intelligence

Tanaya Sarmah Architecture **Risk Management**

Elisabeth Shrimpton Governance Disaster Risk

3

Penn State University, USA

Forest Resources

Abdullah Konak Information Sciences

Alina Rodriguez IT

Daniel Winstead Ecosystem Sc. & Manag.

University of Sao Paolo, Brazil

Adelaide C. Nardocci **Environmental Health**

Mario Mendiondo Water Sources

Karina Sass **Economics**

• Better identify and represent the linkages between hazard, exposure, sensitivity, and resilience indicators.

versus the current linear approach

- Relationship between drought hazard, vulnerability, and resilience
- Role of institutional, infrastructural, and societal dimensions to improve drought resilience
- Linkage between droughts indicators and their impacts
- Drought management using sociotechnical tools for decision making

- MADIS looks at drought indicators from different perspectives.
 - Experts
 - Policy makers
 - Small scale farming communities

Global Online Delphi Survey with Experts

36 drought vulnerability and resilience indicators were evaluated in terms of its relevancy, easy of understanding, data accessibility, data objectively, data consistency over time.

Scale: low, medium, high, and don't know.

Resilience

Vulnerability

Category	Indicators	Category	Indicators
Agricultural (crop)	Cultivation of drought-resistant crops (%)		Percentage of participation of crop and livestock production in the income of
Agricultural (crop)	Farmers use different crop varieties (%)	Agricultural (crop)	smallholder farming
Agricultural (land)	Land rights clearly defined (yes/no)	Agricultural (crop)	Crop Damage & Sensitivity (Crop Loss)
Government & policy	Existence of drought management policies	Agricultural (general)	Area protected and designated for the conservation of biodiversity (%)
Government & policy	Technical assistance from local entities	Agricultural (general)	Use of Insecticides and pesticides (Use of agricultural inputs)
Government & policy	Farmers with cron livestock or drought insurance (%)	Agricultural (general)	Crop water use efficiency (WUE)*
Government & policy	Water use rights clearly defined	Agricultural (land)	Degree of land degradation and desertification*
dovernment & policy	Availability of drought prediction and warning systems or climatic	Social	Prevalence of conflict/insecurity
Infrastructure & Technology	nredictions	Social	Population without access to (improved) sanitation (%)
Infrastructure & Technology	Transportation network	Social	Gender inequality (categorical)
		Social	Rural population (% of total population)
Infrastructure & Technology	Access to electricity (Acess to energy)	Socioeconomic	Unemployment rate (and/or proportion of formal work)
Socioeconomic	Food source reliability and diversity	Social	Population ages 15-64 (% of total population)
Social	Public participation in local policy	Social	Percentage of population displaced internally or transboundary
Social	Participation in farming cooperatives or associations	Social	Presence of drivers of migration and displacement
Socioeconomic	Access to financing and credit	Socioeconomic	Poverty Rate
Water/stream	Integrated land and water management policies	Socioeconomic	% of the population employed in small farms
Water/stream	Percentage of retained renewable water	Water/stream	Baseline water stress (ratio of withdrawals to renewable supply)
Water/stream	Total dam canacity	Water/stream	Water quality
Water/stream		Water/stream	Groundwater level/sources

Online Delphi Survey with Experts: Demographical Overview

Location

Areas and sectors of expertise

Online Workshop with Experts & Policy Makers:

To investigate the relationships between vulnerability and resilience indicators

Resilience

Survey with Policy Makers

- Survey done in Morocco and Turkey
- Structured questionnaire used for online as well as in-person survey
- 80+ responses gathered in total
- Policy makers from → water, energy, agriculture, environment, disaster management, soil, etc.
- Output → Policy makers perception of supports that exists and further needs to manage droughts

Overview of questions

Crisis management

• Communicating via drought early warning system; Steps taken to help farming communities adapt to drought

Good governance

• Availability of drought disaster management plan; Criteria of water distribution during droughts

Knowledge dissemination & management

• Role of technology in drought management; Short-term & longterm impacts of drought in the region

Mainstreaming Disaster Risk Reduction & Climate Change Adaptation

• Medium to spreading awareness and preparing the farming communities from ensuing drought

Semi-Structured Interviews with Small-Scale Farmers

- 30 participants across 4 regions of Morocco interviewed
- Interviews explore the impacts of drought and adapting to drought
 - Current irrigation, energy source, and crops used
 - Planned or hoped for changes to those systems and triggers for change
 - Support used and support required

Fuzzy Cognitive Mapping with Small-Scale Farmers

- Conducted in Morocco, South Africa, Turkey
- Used to capture views on the connectivity between impacts of drought and adapting to drought through indicators

 Develop an easy-to-use dashboard application for decision-makers to select usable and contextual drought vulnerability and resilience indicators

Drought Resilience DSS

Which susceptibility indicators would you like to use?	
Dependency on agr ×	⊙ -
Dependency on agriculture for livelihood (%)	
0	100
0.12	
Which coping capacity indicators would you like to use?	
Cultivation of drou X	◎ -
Cultivation of drought-resistant crops (%)	
0	100
Which adaptive capacity indicators would you like to use?	
Choose an option	-

Susceptability Score

Time	Activity	Speaker
10:00-10:15	Registration and networking tea & coffee	
10:15-10:30	Welcome and objective of the day	Nazmiye Ozkan, Cranfield University
10:30-11:00	Global expert survey on multidimensional indicators	Abdullah Konak, Penn State Berks
11:00-11:30	Learnings from small scale farmers in South Africa	Elisabeth Shrimpton, Cranfield University
11:30-12:00	Systemic risk and low probability high impact events	Gianluca Pescaroli, University College London
12:00-12:30	Co-Developing a balance scorecard for just resilience with experts in islands and coastal cities	Priscila Carvalho, University College London
12:30-12:45	Discussion (Q & A)	
12:45-13:30	Lunch	
13:30-14:00	Emerging indicators of ecosystem resilience	Ron Corstanje, Cranfield University
14:00-14:30	Earth observation, geomorphology, and soil surveys for drought early warning systems and risk management	Richard Teeuw, University of Portsmouth
14:30-14:45	Discussion (Q & A)	
14:45-15:00	Tea & coffee break	
15:00-15:30	Irrigation, schistosomiasis, and droughts	May Sule, Cranfield University
15:30-16:00	Sustainable food systems through water-energy- food nexus	Mike Jacobson, Penn State University (Online)
16:00-16:15	Multi-hazard risks of compound hydroclimatic extremes under uncertainty	Yurui Fan, Brunel University London
16:15-16:30	Discussion (Q & A)	
16:30-17:15	Break out discussion and reporting back	
17:15-17:30	Closing remarks	
18:00-21:00	Networking dinner	Cardington Restaurant, Mitchell Hall

- No fire drill planned
- Keep your phone on silent mode
- No attributes to individuals

- MADIS findings
- Research insights
 - Gather and share knowledge
 - Discuss findings
- Collaboration areas
 - Identify common interests
 - Explore potential collaborations
- Next steps
 - Determine actionable items
 - Plan for implementation

Thank You

T: +44 (0)1234 750111

- 😏 @cranfielduni
- (i) @cranfielduni
- 仔 /cranfielduni