

Energy Plan 2024/25

Executive Summary

This document reviews building energy efficiency, looking at energy use per m² of floor area. It also sets out a plan for energy management for the current year and up to July 2025. This plan is a fundamental part of the University's ISO 50001:2018 certified Energy Management System and will also contribute to the ESOS submission.

The sustained, high unit cost of energy has continued to drive action to reduce energy wastage across the university Estate. The wide-ranging energy campaign, which began in 2022, to identify and implement energy savings, is still ongoing. It includes energy awareness promotion, an Energy Champions Network (comprising staff and student members), building surveys, improved operational efficiency of HVAC systems, a review of building usage, and regular data monitoring.

The University has secured a £7.8 Million grant through round 3c of the Public Sector Decarbonisation Scheme (PSDS3c) to install a large Ground Source Heat Pump installation to supply the campus district heating network and also further extend the network. This follows success with earlier rounds which have seen the district heating network updated with air source heat pumps, improved buildings controls, LED lighting, extra solar installations, battery storage (PSDS2), insulation of the two largest buildings onsite (PSDS3a), thermal storage and the expansion of the heat network to the residential estate (PSDS3b).

Recommendation to prioritise the following objectives:

- 1. Seek to continually improve energy management through ISO 50001.
- 2. Continue to improve the District Heating system and building HVAC system operation.
- 3. Continue to develop and improve the campus HV electricity system.
- 4. Review the reporting format for Risks and Opportunities relating to Issues and how they are actioned.

Energy Planning

An internal audit of the EnMS in 2023 identified that there needs to be clearer identification of risks, opportunities, and consequent actions in our Energy Management System (EnMS), and how they are reported on in our Energy Plan. Once the EnMS has been fully revised, the format of future Energy Plans will be updated to better present this information. The audit also identified that there needs to be greater clarity between objective, action, and evaluation of performance. Steps have been taken to address this in the revised "Action Plan" section of this document.

Buildings and Significant Energy Uses

The majority of energy use on site is associated with buildings in the form of heating, cooling, lighting, small and large power use. There are also centralised IT servers (with a mirror on site for backup), a sewage works, an airport, and a street lighting network.

The building energy uses split out into offices, teaching and meeting spaces, research spaces and equipment, workshops, hotels, halls of residence, flats, family houses, aircraft hangars, bus depot, kitchens, restaurants, and other eating outlets.

The energy to heat and power the buildings is delivered in a number of ways. Over 50% of the electricity for the campus is generated on site by a 1.4 MW combined heat and power unit along with 1.45 MW and 900 kW solar PV farms. The CHP also provides the base load heat for a district heating system which supplies most of the buildings on the technical site. A biomass boiler and air source heat pump also provide heat to this district heating system with gas boilers providing back up. Only one building on the technical site is still heated with oil, and when possible, this will be converted to district heating. The remaining buildings, including those which are residential, are heated with gas boilers, except for Chilver and Baroness Young Halls, which are electrically heated.

The new buildings being delivered as part of the Masterplan are having an impact on the campus energy consumption. Many are technical buildings with significant process energy demands in addition to building HVAC systems. They include the AIRC building, AIRC Test Cells, IMEC building, new Glasshouse, FAAM, Agri Tech, UKCRIC 1 and 2, and DARTeC. Two industrial scale research facilities for generating hydrogen are due to be brought into commission this year. One will significantly increase site gas consumption; the other is expected to significantly increase our electrical demand.

There are over 1000 electricity meters monitoring demand. When grouping these into major loads and building loads, the top 10 account for 40%.

The table below shows the top 10 electricity users (with the next 4 in grey) with the year-onyear change.

Building	Electricity Use 21/22		Electricity	Annual	
	kWh	kWh/Sqm	kWh	kWh/Sqm	change
Baroness Young Halls	1,311,149	144	2,093,007	107	60%
IT Servers	1,356,122	N/A	1,515,097	N/A	12%
C057	638,174	303	1,200,265	689	88%
C052A (inc Solt Building)	1,319,098	180	1,170,583	159	-11%
C083 (inc IMEC)	547,619	45	776,049	99	42%
Mitchell Hall	706,291	91	691,316	90	-2%
C052	698,435	71	650,508	60	-7%
C239 Conf Hotel	487,429	66	591,531	80	21%
C085	322,903	59	570,335	105	77%
C300 Martell	665,314	144	537,217	104	-19%
Stringfellow Halls	523,442	71	513,729	64	-2%
C055	258,060	75	416,323	129	61%
C240 CMDC	341,443	77	322,454	112	-6%
C070	430,721	212	273,014	201	-37%

Table 1: Data for the top 10 electricity users for the reporting periods 21/22 and 22/23

Note: The floor area of Baroness Young Halls increased between 2020/21 and 21/22. Page 2 of 14

The impact of the new residential buildings at Baroness Young Halls is significant, as is the increase in the IT servers load. Elsewhere there are some changes in activity which may be explained by changes after Covid.

The above electricity sites will be reviewed on a regular basis using data from the University's Half Hourly Automatic Metering System.

There are 186 gas meters monitoring demand. Most (55%) of the gas imported is used to fuel the CHP which produced 34% of the electricity consumed in 22/23. Excluding the CHP, the top 10 users of gas account for 95% of natural gas consumption.

The tables below show the top 10 gas users (with the next two in grey) with the year-on-year change.

Building	Gas Use 21/22		Gas Use 22/23		Annual change
	kWh	kWh/Sqm	kWh	kWh/Sqm	
Gas for District Heating	6,065,084	67	3,510,486	42	-42%
Gas for houses	2,635,045	174	2,445,861	162	-7%
Lanchester	2,189,034	196	2,049,641	182	-6%
Mitchell Hall	2,381,363	308	2,009,931	261	-16%
CMDC	1,705,679	593	1,455,945	506	-15%
Stringfellow	1,181,346	148	1,110,919	139	-6%
C300 Martell House	1,192,767	230	612,206	118	-49%
Test Area	619,372	404	611,572	399	-1%
Fedden	572,655	197	587,418	202	3%
Conference Hotel	445,931	60	446,531	61	0%
C046 Welding	156,873	133	216,539	183	38%
Sports Centre	137,920	62	160,471	72	16%

Table 2: Data for the top 10 gas users for the reporting period 21/22 and 22/23

Degree days in 2022/23 were 1,659 compared with 1,570 in 2021/22 an increase of 6%. This makes the savings even more impressive. The gas for District heating does not allow for the other sources of heat including CHP waste heat and biomass heat and a so a year son year comparison is difficult. It is good to see a decrease in gas overall, reflecting a return to normal ventilation regimes after Covid.

The top 10 gas sites will also be reviewed on a regular basis using the gas supplier's Half Hourly data.

Energy Costs

Electricity and gas prices remain high in 2024 although they have fallen slightly from the 2022/23 peak and further falls are expected in April 2024. This still provides a significant imperative to reduce energy wastage but limits funding available for improvements, except for very quick payback measures.

Energy Management

The university's Energy Management System is based on ISO50001:2018. The manual documents how the system works, setting out responsibilities, the policy, the various procedures, tracking legislative changes to maintain compliance and setting a system for monitoring and targeting energy savings.

There are over 40 statutory annual DECs (Display Energy Certificates) and 31 ten year DECs (excluding new builds).

Training is provided to all staff and students (awareness training and online training). Training needs for FMs and Green Team members should be reviewed.

Monitoring and Targeting is being deployed on the operation of the District Heating and CHP with monthly reviews of performance. The maximum demand of the site is also being closely monitored and targeted during winter to reduce the risk of blackout. As described above, the top 10 electricity and gas users are monitored on a more frequent basis.

KPIs

The university has two KPI's specifically relating to energy:

- 1) To monitor building energy use on a kWh per m² basis
- 2) To reduce building energy demand per m² floor area

In addition to this ISO 50,001:2018 requires us to report progress against a fixed baseline.

Table 3: Changes in building energy demand by floor area

Building Energy Demand by floor area over last 5 years (kWh/m2)					
	2018/19	2019/20	2020/21	2021/22	2022/23
Electricity consumed*	108	96	93	100	102
Heat consumed**	165	142	145	128	111
Change in Elec efficiency against baseline 2018/19		-11%	-14%	-7%	-5%
Change in Heat efficiency against baseline 2018/19		-14%	-12%	-22%	-33%

*Electricity consumed excludes electricity specifically used for heating and also specific research activity

** Heat consumed includes electricity for heating, CHP waste heat and assumes a boiler efficiency of 80% where fuel and not heat is metered; specific research activity is excluded. Heat demand is adjusted for Degree Days.

There was a multiplication error for adjusting gas into heat in previous reports. This has been corrected here.

The dramatic improvement in heat efficiency has been helped by a number of factors:

- (i) New highly efficient student accommodation in Baroness Young Halls
- (ii) Improvements to heating scheduling since Covid.
- (iii) Large hangar space not being heated during refurbishment.

The counter trend for electricity is harder to explain. Although the decreases in 2019/20 and 2020/21 were likely affected by Covid. The other issue is that research process loads have yet to be accounted for properly and so increased research activity may be hiding improvements in buildings energy efficiency.

Energy Saving Opportunities

Improving energy efficiency of buildings

Reductions in heating requirement though improved control of heating systems, better insulation and air tightness are a key focus of ongoing improvements. Alternatives to gas boilers are also being sought.

Lighting is the main electrical load in some buildings. Replacing fluorescent lights with LED lighting and improved control can reduce this consumption by more than 50%. Opportunities to upgrade lighting to LED will continue to be sought. There are still opportunities in many of the buildings across campus, including CMDC, the Conference Hotel, Martell House, Mitchell Hall, and a number of car parks.

Modern motors with improved control can significantly reduce the electrical loads associated with air handling and heating systems. Our Mechanical Engineering Team have been asked to identify opportunities as part of their operation and maintenance of the heating and ventilation on site. They are also implementing a programme of works to improve the efficiency of compressed air systems across site.

Behaviour change

Alongside the University Energy Policy there is an Energy Code of Practice which provides more detail for the interpretation of the energy policy. This helps manage expectations and ensure operations are efficient. This code is reviewed annually.

All staff and students are given awareness raising training either through presentation (students) or via an on-line training platform (staff). Staff and students who are keen to volunteer to help improve the environment at Cranfield are organised in "Green Teams" and, more recently, an "Energy Champions Network." They are supported to help with campaigns to save energy.

Energy Campaign

Given the sustained high unit cost of energy, there is a continued emphasis on immediate energy savings. Staff and student Energy Champions have been recruited to help identify no cost and low-cost opportunities for cutting energy wastage across the site. Energy data has been made available, which is updated on a weekly basis.

Page 5 of 14

A review of operations with laboratory mangers, cleaning management, security, IT, and technical managers has helped identify opportunities to reduce energy use without affecting operations. Profile energy data is reviewed weekly to check for anomalies, such as sudden increases or decreases, which might indicate equipment or procedural failures, which can then be followed up.

More building temperature sensors have been installed to help prevent overheating whilst comfort is maintained. Temperature settings have been optimised and timings controlled more effectively. This has included the setting of TRVs to a set maximum consistent with 21 degrees C. Cooling in summer has also been restricted, in air-conditioned buildings where constant temperature is not required. Buildings have had hours of operation set to avoid heating, cooling and lighting being used unnecessarily.

Salix Projects

Energy efficiency projects planned but not yet committed using the amended Salix Revolving Green Fund are summarised below:

Planned	Title	Annual kWh Savings	Carbon Savings tCO ₂ e/y	Project Costs	Annual Savings	Payback Time
20/03/2024	B37 Connection to district heating	49,000	8	£110,000	-£3,000	
21/03/2024	LED lighting	88,000	20	£87,000	£25,000	3.5
22/03/2024	Compressor with inverter motor	41,000	10	£15,000	£11,500	1.3
	Totals	178,000	38	£212,000	£33,500	6.3

Table 4: Proposed Salix RGF projects for 2024

The annual summary of the Commissioned Salix Revolving Green Fund is shown below:

Commissioned (Salix Year)	No of Projects	Annual kWh Savings	Annual Carbon Savings tCO ₂ e	Project Costs	Annual Savings	Average Payback / Years
2021/2022	2	60,073	16	£125,239	£13,611	9.2
2020/2021	2	141,960	39	£181,076	£28,576	6.3
2019/2020	6	101,282	132	£137,388	£28,924	4.7
2018/2019	5	310,380	149	£164,124	£32,114	5.1
2017/2018	4	210,942	91	£187,378	£37,029	5.1
2016/2017	4	154,979	49	£62,861	£12,667	5.0
2015/2016	6	308,408	157	£173,588	£36,631	4.7
2014/2015	12	383,479	119	£124,265	£40,633	3.1
2013/2014	11	377,587	131	£136,290	£45,918	3.0
2012/2013	11	470,628	162	£194,209	£48,897	4.0
2011/2012	8	767,842	262	£208,862	£67,459	3.1
2010/2011	2	17,712	10	£6,487	£3,069	2.1
2009/2010	11	1,684,911	567	£217,901	£118,959	1.8
Totals	84	4,990,183	1,884	£1,919,668	£514,487	3.7

Table 5: Annual summary of commissioned Salix RGF

In addition to the above, the following one-off loan funded projects have been completed.

Table 6: Completed one-off loan	n funded projects
---------------------------------	-------------------

Completed	Loan	Project	Carbon Savings tCO ₂ e	Annual kWh Savings	Project Costs	Annual Savings	Payback / Years
Apr 2018	SEELS 2017	1 MW PV farm in field	439	1,037,660	£1,262,609	£211,683	6.0
Jan 2018	SEELS 2017	B052 LED Lighting Upgrade Various	56	128,262	£27,680	£26,165	1.1
Dec 2017	SEELS 2017	B114 LED Lighting Upgrade	29	64,989	£43,255	£13,258	3.3
Dec 2017	SEELS 2017	B083 LED Lighting Upgrade Various	25	57,976	£14,077	£11,827	1.2
Dec 2017	SEELS 2017	B070 LED Lighting Upgrade Room F10	4	9,903	£3,187	£2,020	1.6
Nov 2017	SEELS 2017	Lanchester LED Lighting Upgrade Various	151	345,468	£208,881	£70,476	3.0

		Totals	2,488	7,703,357	£3,768,160	£779,499	4.8
Jul 2010	SEELS 3	UPS Upgrade (IT Servers)	72	133,200	£71,362	£20,797	3.4
Nov 2012	SEELS 4	DH Pipework improvements and Thermal Store	616	3,353,755	£638,772	£128,449	5.0
Mar 2013	SEELS 5	Adiabatic coolers	74	141,988	£127,443	£29,817	3.3
Mar 2013	SEELS 5	Martell BMS improvements	107	375,337	£43,354	£20,977	2.1
Mar 2013	SEELS 5	Cavity Wall Insulation (Mitchell Hall)	19	104,714	£16,158	£3,560	4.5
Mar 2013	SEELS 5	Pipe insulation (B30,37,39,40,85,88)	59	322,348	£27,075	£9,348	2.9
Oct 2014	SEELS 6	District Heating Control Improvements (Pressure sensors)	289	1,560,000	£242,520	£66,898	3.6
Mar 2015	HEFCE RGF	Biomass Boiler (Wood chip replacing Gas)	527	20,767	£1,000,000	£154,638	6.5
Jul 2017	SEELS 2017	B045 LED Lighting Upgrade Throughout	16	39,009	£36,892	£7,958	4.6
Sep 2017	SEELS 2017	B052 LED Lighting Upgrade F243-F251	4	7,981	£4,896	£1,628	3.0

And the following projects grant funded through BEIS/Salix PSDS2 in 2021/22

Table 7: Projects funded through BEIS/Salix PSDS2 in 2021/22

Measure	Project Costs	kWh Savings	Savings	CO2 savings
DH distribution improvements	£417,881	137,018	£4,111	25
Upgrading and installing new BMS	£1,012,616	1,111,421	£34,012	208
LED Lighting	£870,506	1,156,055	£100,929	619
Solar Farm	£465,215	452,927	£36,724	225
Battery	£811,195	-	£0	-
Air source heat pump (air to water)	£1,430,433	1,601,984	-£75,639	412
Connect B108 & B045 to existing district heating	£133,968	-	£12,505	11

Total PSDS2 Project Cost £5,141,814; Grant £4,993,701

And BEIS/Salix PSDS3 in 2022/23

Table 8: Projects funded through BEIS/Salix PSDS3 in 2022/23

Measure	Project Costs	kWh Savings	Savings	CO2 savings
Hangar insulation	£8,861,828	4,220,154	£211,008	776
Upgrading and installing new BMS	£82,249	195,710	£9,785	36
New heating	£804,697	271,539	£13,577	50
Solar Farm	£817,085	791,635	£106,978	393
Air source heat pump	£880,493	1,375,000	-£11,957	202

Total PSDS3 Project Cost £11,446,352; Grant £11,279,371

Table 9: Projects funded through BEIS/Salix PSDS3b

Measure	Project Costs	kWh Savings	Savings	CO2 savings
Thermal stores	£1,181,161	1,086,300	£108,630	200
BEMS - not remotely managed	£165,076	187,078	£18,708	34
Mitchell Hall Connection to DH	£314,222	136,103	£40,831	98
Conference Hotel Connection to DH	£987,497	75,628	£22,688	54
Stringfellow halls Conection to DH	£1,513,147	136,103	£40,831	98

Total PSDS3B Project Cost £4,161,101; Grant £3,661,769

Table 10: Projects funded through BEIS/Salix PSDS3c

Measure	Project Costs	kWh Savings	Savings	CO2 savings
GSHP	£6,702,420	2,611,319	-£528,643	974
BMS	£200,000	119,963	£11,996	36
Martell House Connection to DH	£1,164,963	-	£0	38
Fedden Flats Connection to DH	£825,054	-	£0	40

Total PSDS3C Project Cost £8,892,437; £7,825,344

Action Plan

The immediate plan for the current year is set out below:

Action	Resources required	Resources required Measure(s) of success Who		By When
Reduce building energy consumption related to HVAC systems	 Financial, Mechanical engineering support, BMS engineering & controls support, Monitoring capability (staff & infrastructure) 	HVAC system operation and maintenance is further optimised and building electricity baseloads related to HVAC system operation are seen to drop as a result. Any pumps which are currently on plug tops are rewired so that they can be controlled through BMS.	PM & MR & CD	July 2025
Improve stability and control of site HV network	 Financial, Electrical Engineering, Consultancy/ advice, Competent contractors, Monitoring capability (staff and infrastructure) 	Electrical engineer and E+E team have clear sight of load distribution across network. Physical mechanisms are in place to prevent export and blackout	GE, CD & DC	July 2025
Improve energy monitoring capability across site	 Financial, E+E staff time, Electrical engineering staff time, Consultancy / expert advice, Competent contractors, IT support, Mechanical engineering support Support to shut some buildings down to undertake works Reliable hardware and software, 	Metering and monitoring strategy is finalised. Meters are installed across the HV network on all plinths. All incomers and max demand can be monitored on a near real-time basis. Faulty building meters are replaced, and AMR is improved. IQ Vision sends data to SystemsLink	CD, GE, DC, PM	July 2025
Further reduce building energy wastage via energy saving campaign activities	 Monitoring capability (staff & infrastructure) Staff time to drive energy campaign through meetings, training, roadshows, and messaging, and record and follow up on actions 	Energy saving ideas and progress with actions recorded. Data analysis and/or feedback from building users and Facilities Managers indicating success of actions	CD, BW, Energy Champions	July 2025
Clarify Risks and Opportunities associated with issues and how	- E+E staff time	The relevant section of the EnMS will be revised. The next Energy Plan will follow a new format which makes this clear	CD &GE	June 2024 Jan 2025

Page 10 of 14

Action	Resources required	Measure(s) of success	Who	By When
they are followed through in the planning process				
Ensure the procurement requirements set out in our EnMS and Energy Code of Practice are being followed.	- E+E staff time - Support from the Procurement team	Internal audit results in a positive outcome.	JN & CD	June 2024
Maintain EnMS and associated documents. Demonstrate improvement	 E+E staff time, Support from Senior Management Team & all elements of the university which are covered by the EnMS 	EnMS and all associated documentation is up to date. Re-certification to ISO 50,001:2018 is secured.	CD, GE, GF	Aug 2024

ESOS Reporting

ESOS reporting is in hand. Our compliance is largely through our maintenance of ISO 50,001 certification. Information is being gathered to upload to the portal for the deadline in June.

SECR reporting

SECR data for 2022/2023

	Energy Purc	hased kWh	n tCO _{2e}				
Fuel Type	2022/23	2021/22	Sc 1	Sc 2	Sc 3	2022/23	2021/22
Gas	34,815,330	37,835,753	6,417.1			6,417.1	6,906.5
Electricity	13,345,446	12,186,252	-	2,763.5	239.2	3,002.6	2,572.0
Biomass	1,636,900	2,389,428	17.6			17.6	30.9
Gas Oil	406,128	246,330	105.6			105.6	64.0
Aviation Turbine Fuel	462,583	641,815	114.8			114.8	160.5
Diesel	282,550	231,980	67.5			67.5	55.7
Aviation Spirit	150,099	117,323	35.6			35.6	28.2
Petrol	14,205	9,771	3.2			3.2	2.2
Burning Oil	31,003	28,363	7.6			7.6	7.1
LPG	0	1,893	-			-	0.4
Sub-Total	51,144,244	53,688,908	6,769.0	2,763.5	239.2	9,771.6	9,827.5
Business Travel (mile (rental/employee owned vehicles where fuel is purchased)	254,122	110,013			108.8	108.8	69.6
Total Gross tCO _{2e}		6,769.0	2,763.5	347.9	9,880.4	9,897.1	

Note: Numbers shown in the table above are rounded to the nearest whole number or tenth.

The Intensity Ratio in 2022/23 for all emissions reported in table is 4.49 tCO2e/£100,000 turnover. In 2021/22 it was 4.92 tCO2e/£100,000 on the same basis.

Notes:

- 1. The methodology used follows the UK Government Environmental Reporting Guidelines. The University has an energy management system certified to ISO50001. Data from invoices is used unless this relies on estimates otherwise the University has extensive automatic meter reading and manual reading processes. Where no data is available, estimates have been used in a few very minor instances amounting to less than 0.3% of the total. These estimates are based on existing data. The reporting period is August 2021 to July 2022. Government greenhouse gas emission factors for 2022 have been used.
- 2. The University generates more than half of its electricity from an on-site gas fuelled CHP with an output of 1.4 MW and also a 1.45 MW solar farm (with 0.9 MW solar farm just installed) and other smaller roof mounted PV systems. The output of the CHP in 2022/2023 was 6,904,220 kWh consuming 19,174,297 kWh of gas, and the output of the solar installations was 1,385,761 kWh. Note this means the overall consumption of electricity was 21,635,427 kWh.
- 3. More detailed information on the progress of the University towards reducing its greenhouse gas emissions and other aspects of environmental performance can be found in the annual environmental report on the website www.cranfield.ac.uk.

Page 12 of 14

Conclusions and Recommendations

In terms of our KPIs, good progress is being made in improving heating energy efficiency and more needs to be done to improve electrical efficiency. There are still significant opportunities for further energy efficiency improvements and renewable energy investments. Continued investment in these measures will contribute to our target being achieved.

Recommendation to prioritise the following objectives:

- 1. Seek to continually improve energy management through ISO 50,001.
- 2. Continue to improve the District Heating system and building HVAC system operation.
- 3. Continue to develop and improve the campus HV electricity system.
- 4. Review the reporting format for Risks and Opportunities relating to Issues and how they are actioned.

Document Control

Document title	Energy Plan		
Document number	CU-SHE-PLAN-07		
Version number	2024/25		
Originator name/document owner	Gareth Ellis – Head of Energy and Environment Team (Facilities)		
Professional Service Unit/Department	Facilities/Energy and Environment Team		
Implementation/effective date	March 2024		
Date of last review and version number	March 2023		
Date of this version	March 2024		
Date of next review	January 2025		
Standards reference	ISO50001:2018		
Signature	Cogul		
Name	Professor Chris Fogwill		
Title	Pro-Vice Chancellor of SWEE and Chair of Energy and Environment Committee		

Document Review					
Version	/ersion Amendment		Date		
2.2	First Approved Issue of original Carbon Management Plan	John Street William Stephens	Feb 2009		
2.2	Updated Version of original Carbon Management Plan	John Street William Stephens	Jul 2014		
2017/18	New format for ISO 50001	Gareth Ellis	Apr 2018		
2017/18v2	Verification of Tasks added to Action Plan	Gareth Ellis	Jun 2018		
2018/23	Annual Updates	Gareth Ellis	Spring		
CU SHE PLAN 07 2024/25	Annual update and split from combined Energy and Carbon Plan into two separate documents	Ceri Dawson	Mar 2024		