Maintaining and if possible increasing the level of soil carbon are hot topics in agricultural and environmental research. Our research ranges from the processes controlling carbon storage in soil, to how to measure, monitor and model it at local to national scales.

At a glance

  • Dates2005-continuing
  • SponsorNational Environmental Research Council (NERC), Department for Environmental Food and Rural Affairs (Defra)
  • FundedApprox. £1.5 million

Current and recent projects

  • Soils Training And Research Studentships (STARS) Centre for Doctoral Training (NERC/BBSRC NE/M009106/1)
  • Soil Agricultural Research and Innovation Accelerator (AgRIA) Centre for Doctoral Training (Rothamsted Research–Cranfield)
  • SOILS-R-GGREAT (NE/P019498/1)
  • A field laboratory for measuring whole-soil carbon balances and greenhouse gas fluxes under controlled temperature and moisture (Royal Society/Wolfson Foundation WL080021/Kirk)

Publications

McCloskey C., Otten W., Paterson E., Ingram B. & Kirk G.J.D. (2020) A field system for measuring plant and soil carbon fluxes using stable isotope methods. Eur. J. Soil Sci. doi:10.1111/ejss.13016.

Prout J.M., Shepherd K.D., McGrath S.P., Kirk G.J.D. & Haefele S.M. (2020) What is a good level of soil organic matter? An index based on organic carbon to clay ratio. Eur. J. Soil Sci. doi:10.1111/ejss.13012.

Lefebvre D., Williams A.G., Meersmans J., Kirk G.J.D., Sohi S., Goglio P. & Smith P. (2020) The potential for soil carbon sequestration using biochar from sugarcane residues: a modelling approach and a case study in São Paulo State, Brazil. Sci. Rep. doi:10.1038/s41598-020-76470-y.

Smith L.G., Kirk, G.J.D., Jones P.J., & Williams A.G. (2019) The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nature Commun. 10, 4641, doi:10.1038/s41467-019-12622-7.

Kirk G.J.D. & Bellamy P.H. (2019) Analysis of changes in organic carbon in mineral soils across England and Wales using a simple single-pool model (vol 61, pg 406, 2010). Eur. J. Soil Sci. 70, 932–932. doi.org/10.1111/j.1365-2389.2010.01242.x

Smith L.G., Jones P.J., Kirk, G.J.D., Pearce B.D. & Williams A.G. (2018) Modelling the production impacts of a widespread conversion to organic agriculture in England and Wales. Land Use Policy, 76, 391–404. doi:10.1016/j.landusepol.2018.02.035.

Tipping E., Davies J.A.C., Henrys P., Kirk G.J.D., Lilly A., Dragosits U., Carnell E., Dore A., Sutton, M.A. & Tomlinson S. (2017) Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci. Rep. 7, 1890. doi:10.1038/s41598-017-02002-w.

Kirk G.J.D. (2016) Carbon losses in the Alps. Nature Geosci. 9, 478–479. doi:10.1038/ngeo2747.

Lloyd D., Ritz K., Paterson E. & Kirk G.J.D. (2016) Effects of soil type and composition of rhizodeposits on rhizosphere priming phenomena. Soil Biol. Biochem. 103, 512–521. doi: 10.1016/j.soilbio.2016.10.002.

Kirk G.J.D., Versteegen A., Ritz K. & Milodowski A.E. (2015) A simple reactive-transport model of calcite precipitation in soils and other porous media. Geochim. Cosmochim. Acta, 153, 108–122. doi:10.1016/j.gca.2015.05.017.

Bellamy P.H., Loveland P.J., Bradley R.I., Lark R.M. & Kirk G.J.D. (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437, 245–248. doi:10.1038/nature04038.

Above: Maps showing SOC/clay ratio.