

Is the Circular Economy the heartbeat of a Decarbonised future ?

.....A lesson from ICT

STEVE HASKEW

Chief Sustainability Officer - Circular Computing[™]

E: <u>steve.haskew@circularcomputing.com</u> T: 07770 915801

LET'S TALK.....NUMBERS

PERIODIC TABLE OF ELEMENTS																		
1 H Hydrogen					1	Ato	mic Nur	nher				I	Pub	C ł	nem		2 Hee Helium	
Nonmetal 3 Lithium Alkali Metal	4 Bee Beryllium Akaline Earth Metal	Hydrogen			S Nam	Atomic Number Symbol Name						6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Neon Noble Gas		
11 Na Sodium Atkati Metal	12 Mgg Magnesium Aikaline Earth Metal				onmetal		mical Gro					13 Al Aluminum Post-Transition Metal	14 Silcon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas	
19 K Potassium Alkali Metal	20 Ca Calcium Alkaline Earth Metal	21 SC Scandium Transition Metal 39	22 Ti Titanium Transition Metal 40	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal 42	25 Mn Manganese Transition Metal 43	26 Fe Iron Transition Metal	27 COD Cobalt Transition Metal	28 Nickel Transition Metal 46	29 Cu Copper Transition Metal	30 Zn Zinc Transition Metal	31 Gaa Gallium Post-Transition Metal	32 Gec Germanium Metalioid	33 As Arsenic Metalloid	34 Se Selenium Nonmetal	35 Br Bromine Halogen	36 Kr Krypton Noble Gas	
Rb Rubidium Aikali Metal	Strontium Alkaline Earth Metal	Yttrium Transition Metal	Zr Zirconium Transition Metal 72	Niobium Transition Metal 73	Molybdenum Transition Metal 74	TC Technetium Transition Metal	Ru Ruthenium Transition Metal	Rhodium Transition Metal	Pd Palladium Transition Metal	Ag Silver Transition Metal 79	Cd Cadmium Transition Metal 80	Indium Post-Transition Metal	SU Tin Post-Transition Metal 82	Sh Sb Antimony Metalloid	Tellurium Metalloid	lodine Halogen	Xe Xenon Noble Gas	Pd
Cesium Aikail Metal 87	Barium Atkaline Earth Metal 88	*	Hafnium Transition Metal 104	Tantalum Transition Metal 105	Tungsten Transition Metal	Renium Transition Metal 107	Osmium Transition Metal 108	Iridium Transition Metal 109	Platinum Transition Metal 110	Gold Transition Metal	Hg Mercury Transition Metal 112	Thallium Post-Transition Metal 1113	Pb Lead Post-Transition Metal 114	Bismuth Post-Transition Metal 115	Polonium Metalloid	At Astatine Halogen	Radon Noble Gas 1118	40% Global Supply in Russia
Francium Alkali Metal	Radium Atkaline Earth Metal	**	Rf Rutherfordium Transition Metal	Dubnium Transition Metal	Sg Seaborgium Transition Metal	Bh Bohrium Transition Metal	Hss Hassium Transition Metal	Mt Meitnerium Transition Metal	DS Darmstadtium Transition Metal	Rg Roentgenium Transition Metal	Copernicium Transition Metal	Nihonium Post-Transition Metal	Flerovium Post-Transition Metal	Mcc Moscovium Post-Transition Metal	Livermorium Post-Transition Metal	Ts Tennessine Halogen	Oganesson Noble Gas	Conflict Mineral (DRC)
			Lanthanum Lanthanide 89	Cerium Lanthanide 90	Praseodymium Lanthanide 91	Nd Neodymium Lanthanide 92	Promethium Lanthanide 93	Sm Samarium Lanthanide 94	Europium Lanthanide 95	Gd Gadolinium Lanthanide 96	Tb Terbium Lanthanide 97	Dy Dysprosium Lanthanide	Ho Holmium Lanthanide	Erbium Lanthanide	Thulium Lantharide	Yb Ytterbium Lenthanide	Lutetium Lanthanide	Ŵ, Nd
			Actinium Actinide	Thorium Actinide	Protactinium Actinide	U Uranium Actinide	Np Neptunium Actinide	Pu Plutonium Actinide	Americium Actinide	Curium Actinide	Bk Berkelium Actinide	Californium Actinide	Es Einsteinium Actinide	Fermium Actinide	Mendelevium Actinide	Nobelium Actinide	Lr Lawrencium Actinide	Vibration in Electronics

ELEMENTS OF A SMARTPHONE

ELEMENTS COLOUR KEY: ALKALI METAL ALKALINE EARTH METAL - TRANSITION METAL GROUP 13 GROUP 14 GROUP 15 GROUP 16 HALOGEN LANTHANIDE

OELECTRONICS SCREENO-Indium tin oxide is a mixture of Copper is used for wiring in the In indium oxide and tin oxide, used phone, whilst copper, gold and silver Indium 0 in a transparent film in the screen are the major metals from which ₅₀ Sn that conducts electricity. This allows microelectrical components are Oxygen the screen to function as a touch fashioned. Tantalum is the major screen. component of micro-capacitors. Tin Nickel is used in the microphone as well Si The glass used on the majority of Al Dv Pr as for other electrical connections. Alloys smartphones is an aluminosilicate Silicon including the elements praseodymium, Aluminium glass, composed of a mix of alumina gadolinium and neodymium are used (Al₂O₂) and silica (SiO₂). This glass in the magnets in the speaker and also contains potassium ions, which 0 Gd Κ microphone. Neodymium, terbium and Tb Nd help to strengthen it. dysprosium are used in the vibration unit. Terbiun Gadoliniu Pure silicon is used to manufacture A variety of Rare Earth Element Si Sb 0 Tb La the chip in the phone. It is oxidised compounds are used in small Silicon Antimon Oxygen Lanthanum Terbium quantities to produce the colours to produce non-conducting regions, then other elements are added in in the smartphone's screen. Some Ρ Ga order to allow the chip to conduct As compounds are also used to reduce Pr Eu Dy UV light penetration into the phone. electricity. Phosphorus Gallium Arsenic Tin & lead are used to solder Gd Pb Sn Tin electronics in the phone. Newer leadfree solders use a mix of tin, copper and silver. **BATTERY O O CASING** The majority of phones use lithium ion batteries, Magnesium compounds are alloyed to make Li Mg which are composed of lithium cobalt oxide as a some phone cases, whilst many are made Carbon 0 of plastics. Plastics will also include flame positive electrode and graphite (carbon) as the retardant compounds, some of which contain negative electrode. Some batteries use other Oxygen Al C metals, such as manganese, in place of cobalt. bromine, whilst nickel can be included to Br The battery's casing is made of aluminium. reduce electromagnetic interference. Carbon Aluminiu Bromine

© COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem Shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

WHAT MAKES A LAPTOP?

A breakdown of the materials, both critical and non-critical

50% Steel and Aluminium	26% ABS-PC
	12% Metals (Copper & Compounds)
	9% Ероху

Minerals and materials used per laptop

Material	Usage (grams)	Status
Copper	270	Non-Critical
Cobalt	65	Non-Critical
Tin	9.33	Non-Critical
Neodymium	2.1	Non-Critical
Tantalum	1.7	Critical
Silver	0.44	Non-Critical
Praseodymium	0.27	Critical
Gold	0.1	Non-Critical
Dysprosium	0.06	Critical
Indium	0.04	Critical
Palladium	0.04	Critical
Platinum	0.004	Critical
Yttrium	0.0016	Critical
Gallium	0.0016	Critical
Gadolinium	0.00075	Critical
Cerium	0.0001	Critical
Europium	0.00003	Critical
Lanthanum	0	
Terbium	0	

Carbon Neutral Organisation

THE CIRCULAR ECONOMY

The future depends on you

THE WORLD'S FIRST REMANUFACTURED LAPTOP BSI KITEMARKTM

circular MANUFACTURING PROCESS

The awarding of the BSI Kitemark[™] certifies that our Circular Remanufacturing Process produces products 'equal to or better than new' as required by the BS standard BS8887-220 and BS8887-211.

KM 747377 BS 8887-220:2010 BS 8887-211:2012

Certified

Remanufacturer

KITEMARKTM

Because IT should

80% OF A LAPTOP'S ENVIRONMENTAL IMPACT IS FROM PRODUCTION

PRODUCTION

ASSEMBLY

LOGISTICS

RECYCLING

DISTRIBUTION

- -

EWASTE

- 316kgs Co2eq is the average carbon footprint of a brand-new laptop
- 1,200kgs of precious earth resources are extracted and mined
- 190,000kgs of water is consumed during extraction and production
- Conflict minerals are used in production; cobalt, gold, tin, tantalum and tungsten
- Poor labour practices in supply chains from Africa to China

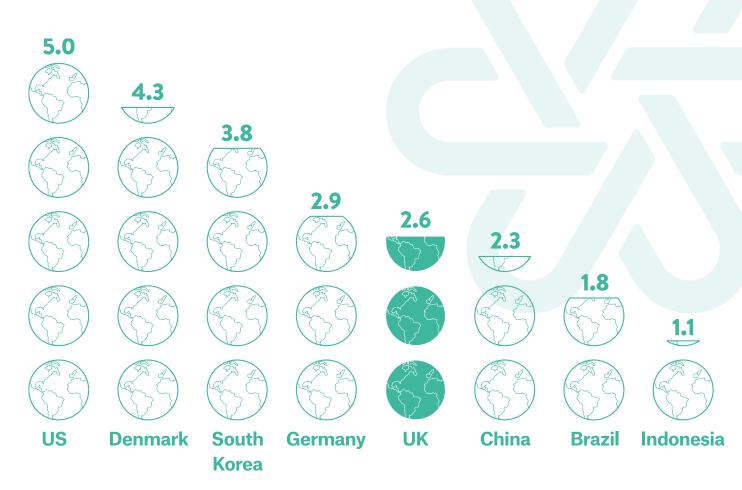
WE NEED A NEW WAY OF THINKING

Our linear consumption (take/make/use/dispose) of 250 Million new laptops a year causes.

Climate change

USE

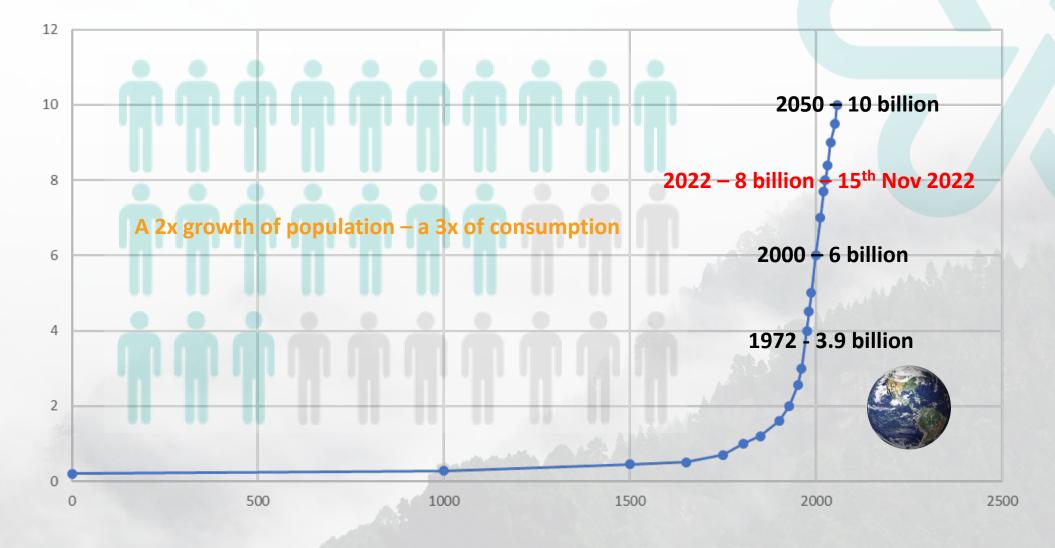
- **Resource depletion**
- 50Mt eWaste
- Social injustice



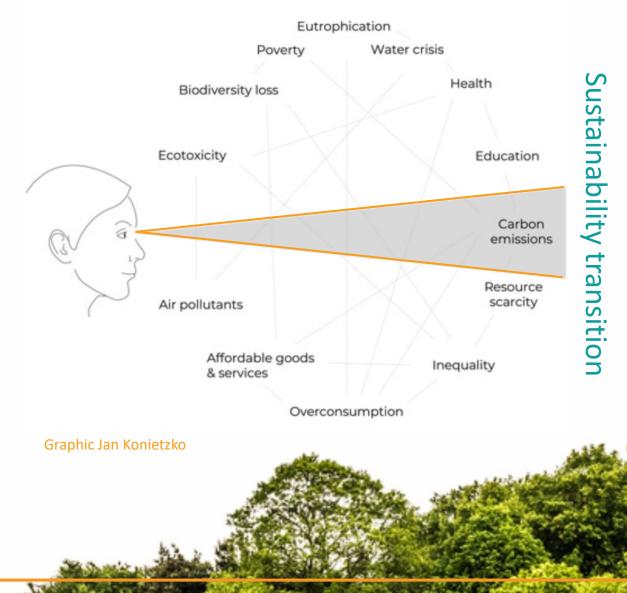
OVER CONSUMPTION

THE WORLD IS NOT ENOUGH

Number of earths and its resources needed if the world's population lived like the following countries



Selected countries. Calculated based on 2021 Earth Overshoot Days/2017 data Source: Global Footprint Network

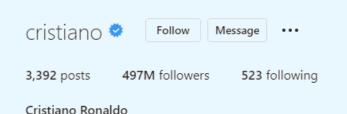

$$\bigcirc$$

GLOBAL POPULATION

CARBON TUNNEL VISION

A decarbonised future is not possible without the Circular Economy.

Remanufacturing is the heartbeat of the Circular Economy.


Therefore... a decarbonised future state relies on remanufacturing.

But you cannot decouple other elements of a sustainable future from carbon. If we affect this, then we effect so much more. ...Numbers

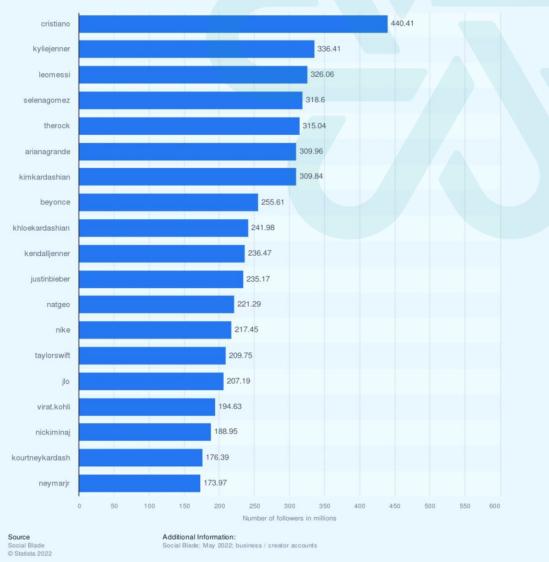
SOCIAL MEDIA

Join my NFT journey on @Binance. Click the link below to get started. ter.li/CR7-On-Binance

1 Post

Energy 43MWh (43 million watt hours)

Equivalent of 19 Houses for a year


Charge out rate of USD 1.6 million per post.

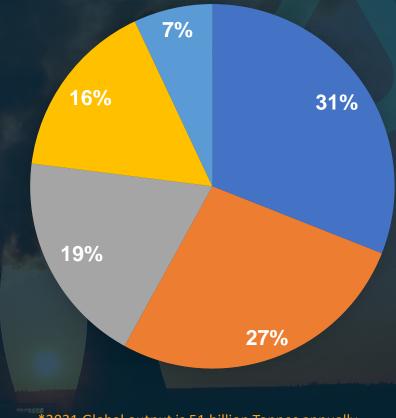
Posts 1.7 times a day (600 a year)

Energy of 21 Million Watt Hours

Equivalent of 1,100 houses for a year

WE ARE DUMPING 140 MILLION* TONNES OF GHG INTO OUR ATMOSPHERE EVERY 24 HOURS!

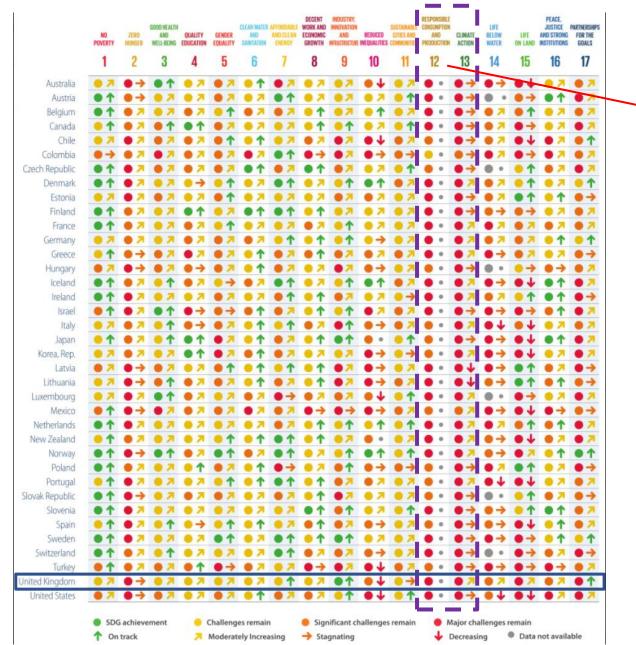
The CO² of Stuff


Making Stuff (including cement, steel and plastic - and ICT)

Powering stuff (electricity)

Growing stuff (including plants and animals)

Transporting stuff (including planes, trucks, cargo ships and cars)


Temperature regulating stuff (meaning heating, cooling, and refridgeraton)

*2021 Global output is 51 billion Tonnes annually

*2021 Global output is 51 billion Tonnes annually

Don't turn away from **12 and 13**. You cannot decouple them. Taking hold of **12** will drive **13** down. We have **mastered sustainable production.** It is down to the market to consume the product.

2 RESPONSIBLE CONSUMPTION AND PRODUCTION

To make and ship a new laptop produces CO² (bad for climate).

https://dashboards.sdgindex.org/chapters/part-2-the-sdg-index-and-dashboards

WHAT DEFINES SUSTAINABLE IT?

ACQUISITION

Sustainable production ...to deliver uncompromised... Sustainable consumption

IN USE

Sustainable/renewable energy Smart plugs Intelligent users/use, etc

RETIREMENT & VALUE RETENTION

Next generation resources, Sanitisation of your data Then entering a re-use model

THE POSITIVE IMPACTS GAINED WITH CIRCULAR COMPUTING LAPTOPS

1. CIRCULAR ECONOMY

Resource efficient economy Climate positive environment Sustainable & ethical Regenerative & restorative

2. GET THE IT YOU NEED FOR LESS

Same as new quality Better value for money Available from stock or 4-8 weeks Meets performance needs Same as new warranty Premium user experience

3. SUSTAINABLE OUTCOMES

316kgs of CO² is avoided

5 Trees are planted

0% eWaste is produced

1,200 kgs of virgin earth resources are preserved.

190,000 litres of

water is saved.

600Kgs of CO²eq captured from 5 Trees.

OUR IMPACTS TO DATE

Creating a carbon neutral, Circular Economy enabled supply which we evidence as resilient and robust

ECONOMIC SAVING CO²

CO² PREVENTED

RESOURCES PRESERVED

Circa £15-21 Million

22,120 tonnes carbon reduction

84,000 tonnes

WATER SAVED IN PRODUCTION 13 trillion litres

REFORESTATION

350,000 trees

As of 0900 on 23-06-22 (70,000 units)

Because IT shouldn't cost the Earth

www.circularcomputing.com enquiries@circularcomputing.com

© 2022 A2C Services Limited. Circular Computing[™] and the Circular Computing[™] logo are trademarks of A2C Services Ltd registered in the European Union, the United Kingdom and the United States of America.

Other company and product names, brands and logos included in this document are the trademarks of their respective companies. No part of this publication may be reproduced without written permission of the copyright owner.

CCI002/1.0/20210803